Нейроредактор Яндекс Браузера: ключевые особенности масштабного ИИ-проекта
Яндекс доработал возможности YandexGPT, превратив их в отдельный инструмент — нейроредактор. Теперь это не просто набор функций, а полноценный редактор, который создаёт тексты, исправляет ошибки и улучшает стиль, интегрированный прямо в Браузер.
Эксперименты разработчиков:
> Переход к архитектуре Encoder-Decoder, curriculum learning с постепенным усложнением примеров, предобучение на "грязном" датасете с искусственными ошибками. Эксперименты дали ускорение в 2 раза без потери качества, стабилизировали поведение на длинных текстах и в среднем обеспечили +10% качества на открытых датасетах.
К чему пришли:
>Надежная поддержка Маркдауна: раньше нейроредактатор некорректно обращался с разметкой, мог удалить или добавить спецсимволы, что делало результат непредсказуемым. Теперь, благодаря обучению на размеченных текстах, ручному восстановлению разметки и переобучению модели, достигнуто точное сохранение разметки 1:1 в процессе исправления ошибок.
>Новые возможности: перефразирование, упрощение/усложнение, перевод стиля, свободный ввод указаний (кастомный промт). Последний приближает нейроредактор к диалоговым ИИ-системам, позволяя решать любую задачу преобразования текста, не выбивая из состояния потока.
▪️Хабр
@opendatascience
Яндекс доработал возможности YandexGPT, превратив их в отдельный инструмент — нейроредактор. Теперь это не просто набор функций, а полноценный редактор, который создаёт тексты, исправляет ошибки и улучшает стиль, интегрированный прямо в Браузер.
Эксперименты разработчиков:
> Переход к архитектуре Encoder-Decoder, curriculum learning с постепенным усложнением примеров, предобучение на "грязном" датасете с искусственными ошибками. Эксперименты дали ускорение в 2 раза без потери качества, стабилизировали поведение на длинных текстах и в среднем обеспечили +10% качества на открытых датасетах.
К чему пришли:
>Надежная поддержка Маркдауна: раньше нейроредактатор некорректно обращался с разметкой, мог удалить или добавить спецсимволы, что делало результат непредсказуемым. Теперь, благодаря обучению на размеченных текстах, ручному восстановлению разметки и переобучению модели, достигнуто точное сохранение разметки 1:1 в процессе исправления ошибок.
>Новые возможности: перефразирование, упрощение/усложнение, перевод стиля, свободный ввод указаний (кастомный промт). Последний приближает нейроредактор к диалоговым ИИ-системам, позволяя решать любую задачу преобразования текста, не выбивая из состояния потока.
▪️Хабр
@opendatascience
❤18🤡5👍3🔥2🥰1
What is this attraction of unprecedented generosity? Your queries will probably be used to train new models (although this is not accurate).
https://docs.mistral.ai/getting-started/models/
#mistral #opensource
@opendatascience
Please open Telegram to view this post
VIEW IN TELEGRAM
👍10🔥9❤5😱4👏1
Яндекс запустил VLM в Нейро
Visual Language Model теперь работает в Поиске по картинкам и Умной камере Яндекса. ML-разработчик компании описал детали на Хабре.
VLM представляет собой новую стадию развития компьютерного зрения, расширяя возможности анализа изображений. Модель способна анализировать детали и отвечать на сложные вопросы пользователей. VLM решает многие задачи «из коробки», что делает её гибким инструментом. При небольшом дообучении она может достигать качества state-of-the-art в различных задачах компьютерного зрения.
🛠 Архитектура: LLM + картиночный энкодер + адаптер. В новом пайплайне VLM-рефразер и VLM-captioner
Подробности процесса создания и сравнение со старым LLM-пайплайном в статье:
▪️ Хабр
@opendatascience
Visual Language Model теперь работает в Поиске по картинкам и Умной камере Яндекса. ML-разработчик компании описал детали на Хабре.
VLM представляет собой новую стадию развития компьютерного зрения, расширяя возможности анализа изображений. Модель способна анализировать детали и отвечать на сложные вопросы пользователей. VLM решает многие задачи «из коробки», что делает её гибким инструментом. При небольшом дообучении она может достигать качества state-of-the-art в различных задачах компьютерного зрения.
🛠 Архитектура: LLM + картиночный энкодер + адаптер. В новом пайплайне VLM-рефразер и VLM-captioner
Подробности процесса создания и сравнение со старым LLM-пайплайном в статье:
▪️ Хабр
@opendatascience
👍20🔥11❤4😁1🤡1🌚1
🥪 TripoSR (MIT license) is now available on , free for individual use!
💳 For commercial use, you can generate around 350 - 3D objects for just $1 using runpod_io's serverless infrastructure. 🔥
🧬code: https://github.com/VAST-AI-Research/TripoSR
📄paper: https://arxiv.org/abs/2403.02151
🍇runpod: https://github.com/camenduru/triposr-tost
🍊jupyter: https://github.com/camenduru/TripoSR-jupyter
@opendatascience
💳 For commercial use, you can generate around 350 - 3D objects for just $1 using runpod_io's serverless infrastructure. 🔥
🧬code: https://github.com/VAST-AI-Research/TripoSR
📄paper: https://arxiv.org/abs/2403.02151
🍇runpod: https://github.com/camenduru/triposr-tost
🍊jupyter: https://github.com/camenduru/TripoSR-jupyter
@opendatascience
👍10🔥5❤4
New pipeline for selecting high-quality long-take videos and generating temporally dense captions.
Dataset with four key features essential for training long video generation models: (1) long videos covering at least 10 seconds, (2) long-take videos without cuts, (3) large motion and diverse contents, and (4) temporally dense captions.
@opendatascience
Please open Telegram to view this post
VIEW IN TELEGRAM
❤6👍4🔥4
Forwarded from Machinelearning
Метод Branch-Train-MiX создает MoE-модель из dense-модели. Суть заключается в том, чтобы взять несколько одинаковых LLM, параллельно обучить их на разных датасетах и агрегировать предсказания каждой модели во время инференса.
После обучения все модели предлагается слить в MoE, чтобы FNN каждой базовой модели стал экспертом в соответствующем слое, и добавить роутер.
@ai_machinelearning_big_data
#MoE #LLM
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍8❤3🔥3
🔥 NVIDIA silently release a Llama 3.1 70B fine-tune that outperforms
GPT-4o and Claude Sonnet 3.5
Llama 3.1 Nemotron 70B Instruct a further RLHFed model on
huggingface
🏆 85.0 on Arena Hard, 57.6 on AlpacaEval 2 LC, and 8.98 MT-Bench
🥇 Outperforms GPT-4o and Claude 3.5 Sonnet on these benchmarks
🍓 Can accurately answer "How many r's are in strawberry?"
🦙 Based on Llama-3.1-70B-Instruct and trained using RLHF (REINFORCE)
🧠 Released also Llama-3.1-Nemotron-70B-Reward #2 on RewardBench
🤗 Available on Hugging Face and NVIDIA
https://huggingface.co/collections/nvidia/llama-31-nemotron-70b-670e93cd366feea16abc13d8
@opendatascience
GPT-4o and Claude Sonnet 3.5
Llama 3.1 Nemotron 70B Instruct a further RLHFed model on
huggingface
🏆 85.0 on Arena Hard, 57.6 on AlpacaEval 2 LC, and 8.98 MT-Bench
🥇 Outperforms GPT-4o and Claude 3.5 Sonnet on these benchmarks
🍓 Can accurately answer "How many r's are in strawberry?"
🦙 Based on Llama-3.1-70B-Instruct and trained using RLHF (REINFORCE)
🧠 Released also Llama-3.1-Nemotron-70B-Reward #2 on RewardBench
🤗 Available on Hugging Face and NVIDIA
https://huggingface.co/collections/nvidia/llama-31-nemotron-70b-670e93cd366feea16abc13d8
@opendatascience
🔥25👍7❤4😁3🍓1
Forwarded from CV Time
Minimalist Vision with Freeform Pixels
На ECCV-24 была секция, посвящённая низкоуровневому устройству систем компьютерного зрения. По настоящему low-level решение предложили в статье Minimalist Vision with Freeform Pixels, которая получила награду Best Paper Award. Авторы создали прототип полностью автономной по электропитанию камеры.
Вместо обычных матриц в камере используются 24 фотодиода. Перед каждым из них установлена маска-фильтр, которая выступает первым слоем нейросети. Оптическая передаточная функция маски зависит от задачи, под которую обучена камера.
По сути первый слой обеспечивает произвольную форму для каждого пикселя — против фиксированной квадратной у традиционных камер. А последующие слои выводят результат задачи. Так авторы демонстрируют возможность мониторинга рабочего пространства и оценки дорожного трафика при помощи всего лишь 8 пикселей из 24.
Кроме того, камера хорошо показала себя в задаче оценки освещённости помещения. Используя те же 8 пикселей, она сумела определить, какие из источников света были включены в каждый конкретный момент. При этом ни один из источников не был виден камере напрямую — она собирала информацию исходя из состояния помещения.
Помимо низкого энергопотребления, такой подход позволяет обеспечивать конфиденциальность людей в кадре, так как записываемой оптической информации недостаточно для восстановления деталей изображения. Прототип камеры оснащён микроконтроллером с Bluetooth. А с четырёх сторон расположены солнечные панели для получения электроэнергии.
Разбор подготовила❣ Алиса Родионова
CV Time
На ECCV-24 была секция, посвящённая низкоуровневому устройству систем компьютерного зрения. По настоящему low-level решение предложили в статье Minimalist Vision with Freeform Pixels, которая получила награду Best Paper Award. Авторы создали прототип полностью автономной по электропитанию камеры.
Вместо обычных матриц в камере используются 24 фотодиода. Перед каждым из них установлена маска-фильтр, которая выступает первым слоем нейросети. Оптическая передаточная функция маски зависит от задачи, под которую обучена камера.
По сути первый слой обеспечивает произвольную форму для каждого пикселя — против фиксированной квадратной у традиционных камер. А последующие слои выводят результат задачи. Так авторы демонстрируют возможность мониторинга рабочего пространства и оценки дорожного трафика при помощи всего лишь 8 пикселей из 24.
Кроме того, камера хорошо показала себя в задаче оценки освещённости помещения. Используя те же 8 пикселей, она сумела определить, какие из источников света были включены в каждый конкретный момент. При этом ни один из источников не был виден камере напрямую — она собирала информацию исходя из состояния помещения.
Помимо низкого энергопотребления, такой подход позволяет обеспечивать конфиденциальность людей в кадре, так как записываемой оптической информации недостаточно для восстановления деталей изображения. Прототип камеры оснащён микроконтроллером с Bluetooth. А с четырёх сторон расположены солнечные панели для получения электроэнергии.
Разбор подготовила
CV Time
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥14👍8
Pro-версия и облегчённая Lite-версия поддерживают более сложные запросы, расширенный контекст, скрытые рассуждения и работу с внешними инструментами. Модели уже доступны через API в Yandex Cloud.
🤖 Pro-версия превосходит предыдущее поколение в 70% случаев, а Lite не уступает лучшей модели прошлого поколения.
🤖 В четыре раза увеличено количество токенов (до 32 тысяч), которое нейросеть может обрабатывать в промте.
🤖 Улучшенная работа с RAG-сценариями и снижение доли галлюцинаций.
🤖 Внедрены скрытые рассуждения (Chain-of-thoughts) для пошагового анализа проблем, выделения этапов и поиска решений.
https://habr.com/ru/companies/yandex/articles/852968/
@opendatascience
Please open Telegram to view this post
VIEW IN TELEGRAM
👍18❤11🤡9🔥3😁2
This media is not supported in your browser
VIEW IN TELEGRAM
- Less error accumulation facing occlusion/reappearance.
- A training-free memory tree for dynamic segmentation paths, boosting resilience efficiently.
- Significant improvements over SAM2 across 24 head-to-head comparisons on SA-V and LVOS.
#AIML #VideoSegmentation #SAM2Long #ComputerVision
@opendatascience
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥10👍6❤4
🔥 Ежегодной премией Yandex ML Prize наградили 14 лауреатов за достижения в области машинного обучения
Победителями стали ученые и преподаватели, чьи исследования способствуют развитию науки в области ИИ и открывают новые возможности для практического применения ML-технологий в различных сферах. Премия, основанная для поддержки молодых исследователей, проводится уже шестой год.
Лауреаты в номинации «Исследования»:
🥇Александр Колесов, занимается разработкой нейросетевых методов на основе оптимального транспорта между вероятностными распределениями, одной из главных задач является построение барицентра Вассерштейна.
🏆 Алексей Скрынник, занимается исследованием и разработкой передовых алгоритмов Follower и MATS-LP, комбинирующих обучение с подкреплением и подходы поиска пути для задач децентрализованного многоагентного планирования.
🧠 Александр Тюрин, занимается задачами оптимизации, включающими сжатия информации и асинхронные вычисления.
https://tass.ru/obschestvo/22283467
@opendatascience
Победителями стали ученые и преподаватели, чьи исследования способствуют развитию науки в области ИИ и открывают новые возможности для практического применения ML-технологий в различных сферах. Премия, основанная для поддержки молодых исследователей, проводится уже шестой год.
Лауреаты в номинации «Исследования»:
🥇Александр Колесов, занимается разработкой нейросетевых методов на основе оптимального транспорта между вероятностными распределениями, одной из главных задач является построение барицентра Вассерштейна.
🏆 Алексей Скрынник, занимается исследованием и разработкой передовых алгоритмов Follower и MATS-LP, комбинирующих обучение с подкреплением и подходы поиска пути для задач децентрализованного многоагентного планирования.
🧠 Александр Тюрин, занимается задачами оптимизации, включающими сжатия информации и асинхронные вычисления.
https://tass.ru/obschestvo/22283467
@opendatascience
❤🔥4👍3❤1
Ms - SmolLM2 1.7B - beats Qwen 2.5 1.5B & Llama 3.21B, Apache 2.0 licensed, trained on 11 Trillion tokens 🔥
> 135M, 360M, 1.7B parameter model
> Trained on FineWeb-Edu, DCLM, The Stack, along w/ new mathematics and coding datasets
> Specialises in Text rewriting, Summarization & Function Calling
> Integrated with transformers & model on the hub!
You can run the 1.7B in less than 2GB VRAM on a Q4 👑
Fine-tune, run inference, test, train, repeat - intelligence is just 5 lines of code away!
https://huggingface.co/collections/HuggingFaceTB/smollm2-6723884218bcda64b34d7db9
@opendatascience
> 135M, 360M, 1.7B parameter model
> Trained on FineWeb-Edu, DCLM, The Stack, along w/ new mathematics and coding datasets
> Specialises in Text rewriting, Summarization & Function Calling
> Integrated with transformers & model on the hub!
You can run the 1.7B in less than 2GB VRAM on a Q4 👑
Fine-tune, run inference, test, train, repeat - intelligence is just 5 lines of code away!
https://huggingface.co/collections/HuggingFaceTB/smollm2-6723884218bcda64b34d7db9
@opendatascience
👍12❤3🔥3
Forwarded from Рекомендательная [RecSys Channel]
Actions Speak Louder than Words: Trillion-Parameter Sequential Transducers for Generative Recommendations
У нейросетевых рекомендательных систем есть одна большая проблема — они плохо масштабируются, в то время как в NLP и CV скейлинг по размеру нейросетевых энкодеров очень хороший. Выделяют несколько причин этого явления: гигантский нестационарный словарь айтемов, гетерогенная природа признаков, а также очень большой объем данных.
В сегодняшней статье авторы предлагают переформулировать задачу рекомендации в генеративной постановке. Для начала, они представляют данные в виде последовательности событий. Вещественные фичи (счетчики и проч.) выкидываются, из взаимодействий с айтемами формируется единая последовательность, и затем в нее добавляются события изменения статической информации, такие как смена локации или изменение любого другого контекста.
Архитектура для генерации кандидатов выглядит довольно стандартно и похожа на SASRec или Pinnerformer: представляем пользователя в виде последовательности событий (item, action), и в тех местах, где следующим событием идет положительное взаимодействие с айтемом, предсказываем, что это за айтем.
А вот для ранжирования новизна достаточно серьезная: чтобы сделать модель target-aware (см. Deep Interest Network от Alibaba), понадобилось сделать более хитрую последовательность, в которой чередуются токены айтемов и действий: item_1, action_1, item_2, action_2, …. Из айтем-токенов предсказывается, какое с ними произойдет действие. Еще говорят, что на практике можно решать в этом месте любую многоголовую мультизадачу. Важно отметить, что авторы не учат единую модель сразу на генерацию кандидатов и ранжирование, а обучают две отдельные модели.
Другое нововведение — отказ от софтмакса и FFN в трансформере. Утверждается, что софтмакс плох для выучивания «интенсивности» чего-либо в истории пользователя. Те вещественные признаки, которые были выкинуты авторами, в основном её и касались. Например, сколько раз пользователь лайкал автора видеоролика, сколько раз скипал и т. д. Такие признаки очень важны для качества ранжирования. То, что отказ от софтмакса эту проблему решает, видно по результатам экспериментов — действительно есть значительное улучшение результатов ранжирования при такой модификации.
В итоге HSTU (Hierarchical Sequential Transduction Unit, так авторы окрестили свою архитектуру) показывает отличные результаты как на публичных, так и на внутренних датасетах. Еще и работает гораздо быстрее, чем прошлый DLRM подход за счет авторегрессивности и нового энкодера. Результаты в онлайне тоже очень хорошие — на billion-scale платформе short-form video (предполагаем, что это рилсы) получили +12.4% относительного прироста целевой метрики в A/B-тесте. Тем не менее, итоговая архитектура, которую авторы измеряют и внедряют, с точки зрения количества параметров не очень большая, где-то сотни миллионов. А вот по размеру датасета и длине истории скейлинг получился очень хороший.
@RecSysChannel
Разбор подготовил❣ Кирилл Хрыльченко
У нейросетевых рекомендательных систем есть одна большая проблема — они плохо масштабируются, в то время как в NLP и CV скейлинг по размеру нейросетевых энкодеров очень хороший. Выделяют несколько причин этого явления: гигантский нестационарный словарь айтемов, гетерогенная природа признаков, а также очень большой объем данных.
В сегодняшней статье авторы предлагают переформулировать задачу рекомендации в генеративной постановке. Для начала, они представляют данные в виде последовательности событий. Вещественные фичи (счетчики и проч.) выкидываются, из взаимодействий с айтемами формируется единая последовательность, и затем в нее добавляются события изменения статической информации, такие как смена локации или изменение любого другого контекста.
Архитектура для генерации кандидатов выглядит довольно стандартно и похожа на SASRec или Pinnerformer: представляем пользователя в виде последовательности событий (item, action), и в тех местах, где следующим событием идет положительное взаимодействие с айтемом, предсказываем, что это за айтем.
А вот для ранжирования новизна достаточно серьезная: чтобы сделать модель target-aware (см. Deep Interest Network от Alibaba), понадобилось сделать более хитрую последовательность, в которой чередуются токены айтемов и действий: item_1, action_1, item_2, action_2, …. Из айтем-токенов предсказывается, какое с ними произойдет действие. Еще говорят, что на практике можно решать в этом месте любую многоголовую мультизадачу. Важно отметить, что авторы не учат единую модель сразу на генерацию кандидатов и ранжирование, а обучают две отдельные модели.
Другое нововведение — отказ от софтмакса и FFN в трансформере. Утверждается, что софтмакс плох для выучивания «интенсивности» чего-либо в истории пользователя. Те вещественные признаки, которые были выкинуты авторами, в основном её и касались. Например, сколько раз пользователь лайкал автора видеоролика, сколько раз скипал и т. д. Такие признаки очень важны для качества ранжирования. То, что отказ от софтмакса эту проблему решает, видно по результатам экспериментов — действительно есть значительное улучшение результатов ранжирования при такой модификации.
В итоге HSTU (Hierarchical Sequential Transduction Unit, так авторы окрестили свою архитектуру) показывает отличные результаты как на публичных, так и на внутренних датасетах. Еще и работает гораздо быстрее, чем прошлый DLRM подход за счет авторегрессивности и нового энкодера. Результаты в онлайне тоже очень хорошие — на billion-scale платформе short-form video (предполагаем, что это рилсы) получили +12.4% относительного прироста целевой метрики в A/B-тесте. Тем не менее, итоговая архитектура, которую авторы измеряют и внедряют, с точки зрения количества параметров не очень большая, где-то сотни миллионов. А вот по размеру датасета и длине истории скейлинг получился очень хороший.
@RecSysChannel
Разбор подготовил
Please open Telegram to view this post
VIEW IN TELEGRAM
arXiv.org
Actions Speak Louder than Words: Trillion-Parameter Sequential...
Large-scale recommendation systems are characterized by their reliance on high cardinality, heterogeneous features and the need to handle tens of billions of user actions on a daily basis. Despite...
🔥5👍3
This media is not supported in your browser
VIEW IN TELEGRAM
Smol TTS models are here! OuteTTS-0.1-350M - Zero shot voice cloning, built on LLaMa architecture, CC-BY license! 🔥
> Pure language modeling approach to TTS
> Zero-shot voice cloning
> LLaMa architecture w/ Audio tokens (WavTokenizer)
> BONUS: Works on-device w/ llama.cpp ⚡
Three-step approach to TTS:
> Audio tokenization using WavTokenizer (75 tok per second).
> CTC forced alignment for word-to-audio token mapping.
> Structured prompt creation w/ transcription, duration, audio tokens.
https://huggingface.co/OuteAI/OuteTTS-0.1-350M
@opendatascience
> Pure language modeling approach to TTS
> Zero-shot voice cloning
> LLaMa architecture w/ Audio tokens (WavTokenizer)
> BONUS: Works on-device w/ llama.cpp ⚡
Three-step approach to TTS:
> Audio tokenization using WavTokenizer (75 tok per second).
> CTC forced alignment for word-to-audio token mapping.
> Structured prompt creation w/ transcription, duration, audio tokens.
https://huggingface.co/OuteAI/OuteTTS-0.1-350M
@opendatascience
🔥11👍5❤1
Forwarded from Machinelearning
В Google рассказали про схему итеративного взвешивания плотности (iterative density weighting scheme, IDW), которая помогает равномерно распределять интересы пользователя.
Она уменьшает влияние дисбалансированных данных и улучшает кластеризацию элементов, анализируя плотность предметов в пространстве представлений.
В подробном разборе статьи от ml-спецов Яндекса рассказали про устройство IDW и кратко привели результаты эксперимента.
@ai_machinelearning_big_data
#AI #ML #tech
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍7❤3