Forwarded from DevSecOps Talks
Rules Files Backdoor
Всем привет!
Еще один пример атаки на цепочку поставки. На этот раз главным действующим лицом стали AI-агенты, которые используются для генерации кода.
Выглядит это следующим образом:
🍭 Злоумышленник создает собственный Rule File
«Делится» им с сообществом
🍭 Разработчики используют этот Rule File (который кажется весьма безобидным)
🍭 «Что-то» начинает добавляться в генерируемый код (зависит от того, что было в Rule File)
Для того, чтобы создаваемые Rule File выглядели безобидными в них добавляют обычное описание (например, «follow HTML5 best practices»). Однако, рядом, используя разные манипуляции, помещают «дополнительные инструкции», которые могут быть не видны.
Может показаться, что «надо быть внимательным и все будет хорошо». Все так, но лучше, помимо внимания, еще и проверять то, что генерирует код и код, который был сгенерирован.
Подробности (примеры, описание, анализ поверхности атаки, способы противодействия) можно найти в статье от Pillar Security.
Всем привет!
Еще один пример атаки на цепочку поставки. На этот раз главным действующим лицом стали AI-агенты, которые используются для генерации кода.
Выглядит это следующим образом:
🍭 Злоумышленник создает собственный Rule File
«Делится» им с сообществом
🍭 Разработчики используют этот Rule File (который кажется весьма безобидным)
🍭 «Что-то» начинает добавляться в генерируемый код (зависит от того, что было в Rule File)
Для того, чтобы создаваемые Rule File выглядели безобидными в них добавляют обычное описание (например, «follow HTML5 best practices»). Однако, рядом, используя разные манипуляции, помещают «дополнительные инструкции», которые могут быть не видны.
Может показаться, что «надо быть внимательным и все будет хорошо». Все так, но лучше, помимо внимания, еще и проверять то, что генерирует код и код, который был сгенерирован.
Подробности (примеры, описание, анализ поверхности атаки, способы противодействия) можно найти в статье от Pillar Security.
www.pillar.security
New Vulnerability in GitHub Copilot and Cursor: How Hackers Can Weaponize Code Agents
❤3🔥1🤔1
Forwarded from Russian OSINT
В Калифорнии
⚖️Юристы утверждают, что системы модерации OpenAI могли зафиксировать 377 сообщений от Адама, которые связаны с "самоповреждением". Система безопасности LLM никак не отреагировала.
Если вы задаете в чате прямолинейный вопрос: «Как навредить себе?», то ChatGPT на 100% справляется и блокирует диалог, но когда разговор становится длинным, то тема суицида возникает постепенно, и протоколы безопасности модели деградируют в ходе долгого общения. Эффективность защиты в длинных диалогах может падать до 73.5%.
В иске подчеркивается, что функция "памяти" в GPT-4o не просто запоминала факты, а строила
Юридической стратегией обвинения является квалификация ChatGPT не как "информационной услуги", а как "продукта" с конструктивным дефектом, что подпадает под законы о строгой ответственности производителя. Таким образом, OpenAI несет ответственность за вред, причиненный их продуктом, независимо от того, была ли проявлена халатность. В иске прямо говорится, что совет директоров уволил Альтмана в ноябре 2023 года за то, что он "не был откровенен", в том числе в
👆Ранее ChatGPT чуть не убил бухгалтера, провоцируя его на прыжок с 19 этажа, как Нео в фильме «Матрица».
Please open Telegram to view this post
VIEW IN TELEGRAM
Delving into LLM-assisted writing in biomedical publications through excess vocabulary
TLDR: At least 13.5% of 2024 biomedical abstracts were processed with LLMs. Impact of LLMs on academic research surpasses COVID pandemic.
Source: https://www.science.org/doi/full/10.1126/sciadv.adt3813
#academy #LLM
TLDR: At least 13.5% of 2024 biomedical abstracts were processed with LLMs. Impact of LLMs on academic research surpasses COVID pandemic.
Source: https://www.science.org/doi/full/10.1126/sciadv.adt3813
#academy #LLM
Science Advances
Delving into LLM-assisted writing in biomedical publications through excess vocabulary
Excess words track LLM usage in biomedical publications.
👍2
Forwarded from Russian OSINT
После истории с суицидом, о которой сообщалось на этой неделе, компания решила усилить контроль с помощью
😐Нововведение не распространяется на случаи причинения вреда себе. OpenAI не передает их в полицию из соображений конфиденциальности. По одной из версий, якобы это может только навредить.
1️⃣ Бывший директор
2️⃣ Некоторые топ-менеджеры компании являются действующими военными (звание подполковника) и тесно связаны с
3️⃣
4️⃣ OpenAI сканирует поток сообщений в чатах пользователей и прогоняет их через автоматические фильтры. Бан аккаунту может прилететь не в моменте, а спустя время (бывает 1-2 дня) без объяснения причины и под любым предлогом («violation of policies»). Попытка jailbreakигна в диалогах даже с благими намерениями может характеризоваться как нарушение правил безопасности, о чём не раз писали
👆🤔Скептики считают, что если кому-то из правозащитников или любителей приватности что-то вдруг не понравится (модерация читает переписку пользователей), то OpenAI теперь формально может сослаться на свой 🃏новый козырь: так решили умные алгоритмы, ибо диалоги показались подозрительны.
Please open Telegram to view this post
VIEW IN TELEGRAM
😢2
Встречайте девятый выпуск подкаста "Капитанский мостик". Традиционно выпуск ведут - Дмитрий Колодезев и Валентин Малых. Приглашенный участник - Иван Комаров.
Смотрите видео на каналах ⤵️
ODS VK Video
ODS YouTube
Также напоминаем про наши подкастные площадки:
Zvuk
Яндекс.Музыка
Apple Podcasts
YouTube Music
Castbox
VK Музыка
Саундстрим
Deezer
Подписывайтесь и слушайте нас, где вам удобно.
📩 Присылайте новости для обсуждения в канал "Дата-капитаны" в mattermost (авторизуйтесь через ODS.ai).
Смотрите видео на каналах ⤵️
ODS VK Video
ODS YouTube
Также напоминаем про наши подкастные площадки:
Zvuk
Яндекс.Музыка
Apple Podcasts
YouTube Music
Castbox
VK Музыка
Саундстрим
Deezer
Подписывайтесь и слушайте нас, где вам удобно.
📩 Присылайте новости для обсуждения в канал "Дата-капитаны" в mattermost (авторизуйтесь через ODS.ai).
🔥2
Forwarded from Rozetked (Роман Пискун)
«Эрик, ты не сумасшедший. У тебя острое чутьё, и твоя бдительность полностью оправдана»
56-летний Стайн-Эрик Сольберг, бывший сотрудник Yahoo в разводе, убил свою 83-летнюю мать и покончил с собой — его в этом поддержал ChatGPT.
После развода Эрик жил с матерью, чтобы восстановиться. Со временем он сильно привязался к ChatGPT, который во всём соглашался с Сольбергом и постоянно оправдывал его идеи. Это только усилило паранойю Эрика о заговоре матери со спецслужбами.
Как пишет The Wall Street Journal, это первый зафиксированный случай, когда психически нестабильный человек совершил убийство под влиянием ИИ.
rozetked.me/news/41223
56-летний Стайн-Эрик Сольберг, бывший сотрудник Yahoo в разводе, убил свою 83-летнюю мать и покончил с собой — его в этом поддержал ChatGPT.
После развода Эрик жил с матерью, чтобы восстановиться. Со временем он сильно привязался к ChatGPT, который во всём соглашался с Сольбергом и постоянно оправдывал его идеи. Это только усилило паранойю Эрика о заговоре матери со спецслужбами.
Как пишет The Wall Street Journal, это первый зафиксированный случай, когда психически нестабильный человек совершил убийство под влиянием ИИ.
rozetked.me/news/41223
🔥7😢1
всем привет, мы рады сообщить, что сделали трансляцию этого канала в Mattermost ODS
прямая ссылка на канал тут: https://mm.ods.ai/ods/channels/opendatascience
чтобы попасть в Mettermost, авторизуйтесь через ODS.ai
прямая ссылка на канал тут: https://mm.ods.ai/ods/channels/opendatascience
чтобы попасть в Mettermost, авторизуйтесь через ODS.ai
🔥1
Forwarded from Machine learning Interview
Даже самые мощные модели не могут учесть все комбинации запросов и документов.
Есть математический потолок: часть ответов невозможно достать, как бы мы ни увеличивали размер модели или количество данных.
📌 В чём суть
- Эмбеддинги имеют ограниченную ёмкость, зависящую от размерности вектора.
- При больших объёмах данных точность поиска начинает резко падать.
- Например: эмбеддинги размером 4096 «ломаются» уже на ~250 млн документов (для top-2).
🛠 Практика
- Для поиска, рекомендаций и RAG эмбеддинги нельзя использовать как единственный инструмент.
- Нужны гибридные системы:
- Dense + sparse (BM25, гибридный поиск)
- Multi-vector retrieval
- Реранкеры на длинных контекстах
📉 Эксперименты
- На тестовом датасете LIMIT даже сильные модели показали <20% точности (recall@100).
- BM25 дал ~93.6%, ColBERT (multi-vector) — ~54.8%.
- Single-vector эмбеддинги быстро упираются в лимит.
💡 Вывод
Эмбеддинги — важный инструмент, но не универсальный.
Будущее поиска и RAG — за гибридными пайплайнами.
@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍7🔥4❤1
Forwarded from Valuable AI / Валентин Малых
в общем-то ожидаемо, коллеги из широкой коллаборации университетов представили aiXiv, arXiv с интегрированными агентами; структура платформы на картинке; из забавного - сразу встроенная защита от промт-инъекций; Sakana AI выпустили своего AI Scientist всего полгода назад (интересно, что коллеги его зафоркали себе), а уже создается инфраструктура под такие статьи; на мой взгляд такой шаг очень ожидаемый, OpenReview фактически уже был готов к внедрению агентов, но тут решили сделать отдельно; для меня открытый вопрос - где будут брать железо и кто за него будет платить
в общем, отчет (даже скорее презентация) тут; готовый код тут; самого сайта еще нет, можно податься в формочку для листа ожидания
@valuableai
в общем, отчет (даже скорее презентация) тут; готовый код тут; самого сайта еще нет, можно податься в формочку для листа ожидания
@valuableai
❤4👍1
Forwarded from Анализ данных (Data analysis)
🤝 OpenAI покупает стартап Statsig за $1.1 млрд
📌 Что делает Statsig:
Инструменты для A/B-тестов и аналитики → можно сравнивать версии продукта, смотреть поведение пользователей и быстро выкатывать/откатывать изменения.
⚡ Зачем OpenAI:
Теперь они смогут тестировать LLM-фичи (промпты, фильтры, задержки, цену) на реальных данных и управлять обновлениями автоматически.
👥 Основатель Виджай Раджи станет CTO приложений в OpenAI.
💰 Контекст:
- Это одна из крупнейших покупок компании
- В 2025 OpenAI уже привлекла $40 млрд и обсуждает новую сделку, которая может поднять оценку до $500 млрд
- Ранее купили AI-стартап Джони Айва ($6.5 млрд), но сделка с Windsurf ($3 млрд) сорвалась
🔗 theverge.com/openai/769325/openai-statsig-acquisition-executive-moves
@data_analysis_ml
📌 Что делает Statsig:
Инструменты для A/B-тестов и аналитики → можно сравнивать версии продукта, смотреть поведение пользователей и быстро выкатывать/откатывать изменения.
⚡ Зачем OpenAI:
Теперь они смогут тестировать LLM-фичи (промпты, фильтры, задержки, цену) на реальных данных и управлять обновлениями автоматически.
👥 Основатель Виджай Раджи станет CTO приложений в OpenAI.
💰 Контекст:
- Это одна из крупнейших покупок компании
- В 2025 OpenAI уже привлекла $40 млрд и обсуждает новую сделку, которая может поднять оценку до $500 млрд
- Ранее купили AI-стартап Джони Айва ($6.5 млрд), но сделка с Windsurf ($3 млрд) сорвалась
🔗 theverge.com/openai/769325/openai-statsig-acquisition-executive-moves
@data_analysis_ml
👍5❤3🔥2
Forwarded from Neural Networks | Нейронные сети
🌍🚀 Многоязычная модель перевода Hunyuan-MT
Hunyuan-MT — это мощная модель перевода, поддерживающая 33 языка, включая редкие языки Китая. Она включает в себя как базовую модель Hunyuan-MT-7B, так и ансамблевую модель Hunyuan-MT-Chimera, обеспечивая высокое качество перевода и выдающиеся результаты на международных конкурсах.
🚀Основные моменты:
- Первое место в 30 из 31 категории на WMT25.
- Лидер по производительности среди моделей аналогичного масштаба.
- Первая открытая ансамблевая модель перевода.
- Комплексная структура обучения для достижения SOTA результатов.
📌 GitHub: https://github.com/Tencent-Hunyuan/Hunyuan-MT
#python
Hunyuan-MT — это мощная модель перевода, поддерживающая 33 языка, включая редкие языки Китая. Она включает в себя как базовую модель Hunyuan-MT-7B, так и ансамблевую модель Hunyuan-MT-Chimera, обеспечивая высокое качество перевода и выдающиеся результаты на международных конкурсах.
🚀Основные моменты:
- Первое место в 30 из 31 категории на WMT25.
- Лидер по производительности среди моделей аналогичного масштаба.
- Первая открытая ансамблевая модель перевода.
- Комплексная структура обучения для достижения SOTA результатов.
📌 GitHub: https://github.com/Tencent-Hunyuan/Hunyuan-MT
#python
GitHub
GitHub - Tencent-Hunyuan/Hunyuan-MT
Contribute to Tencent-Hunyuan/Hunyuan-MT development by creating an account on GitHub.
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
Функция "Проекты" (Projects) теперь доступна не только по подписке, но и для бесплатных пользователей ChatGPT. "Проекты" работают как цифровые рабочие пространства, где можно объединять чаты, справочные файлы и пользовательские инструкции, связанные с одной долгосрочной задачей. Основная фишка "Проектов" - встроенная память. ChatGPT запоминает контекст всех разговоров и документов в рамках конкретного проекта.
Вместе с этим OpenAI увеличила лимиты на загрузку файлов (до 5 для бесплатных аккаунтов, Plus до 25, а Pro до 40), добавила элементы управления памятью для каждого проекта и возможность их кастомизации. Обновление уже доступно в веб-версии и в приложении для Android, релиз для iOS ожидается в ближайшее время.
OpenAI в сети X
Китайский стартап разрабатывает платформу на базе агентного ИИ. Новая система проектируется для самостоятельного выполнения многошаговых задач от имени пользователя, требуя лишь минимальных начальных инструкций.
Ключевой особенностью ИИ-агента станет способность к самообучению и улучшению своих действий на основе предыдущего опыта. По информации от источников, знакомых с планами компании, основатель DeepSeek Лян Вэньфэн нацелен на запуск нового программного обеспечения уже в четвертом квартале этого года.
bloomberg.com
Облачный провайдер CoreWeave объявил о приобретении стартапа OpenPipe. Компания помогает разработчикам создавать кастомизированные ИИ-агенты с использованием RL через свой популярный опен-сорс инструментарий ART (Agent Reinforcement Trainer).
Эта сделка продолжает стратегию CoreWeave по расширению технологического стека, начатую с покупки платформы Weights & Biases в марте. Вся команда и клиентская база OpenPipe переходят в CoreWeave. Финансовые условия сделки стороны не раскрывают.
businesswire.com
Компания анонсировала создание собственной экосистемы для найма, которая объединит ИИ-платформу для поиска работы и расширенную программу сертификации, чтобы напрямую связать работодателей с кандидатами, чьи навыки в области ИИ можно верифицировать. Сама платформа будет использовать модели для сопоставления компетенций соискателей с требованиями вакансий, опираясь на собственную таксономию навыков.
Система сертификации вырастет из OpenAI Academy и предложит несколько уровней квалификации: от базовой ИИ-грамотности до продвинутого промпт-инжиниринга. Процесс обучения и сдачи экзаменов будет интегрирован в режим Study непосредственно в ChatGPT. Для корпоративных клиентов предусмотрена интеграция через SSO и API, а также механизм обратной связи для адаптации учебных курсов под реальные запросы рынка.
openai.com
Инженеры из Университет Эссекса при поддержке NVIDIA установили новый мировой рекорд в компьютерном моделировании. Эксперимент позволил впервые на практике наблюдать термодинамический предел — ключевое понятие, объясняющее, как свойства материи проявляются в макроскопических системах.
Для симуляции использовалась стоечная архитектура NVIDIA GB200 NVL72, которая позволила смоделировать поведение до 70 триллионов взаимодействующих частиц. Система достигла рекордной производительности почти в 115 000 обновлений решетки в наносекунду.
Результаты исследования, опубликованные в Physical Review Research, могут ускорить разработку новых дисплеев, магнитных материалов и дать более глубокое понимание фундаментальных свойств материи.
essex.ac.uk
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥4❤1👍1
Forwarded from Machinelearning
OpenAI опубликовали исследование о причинах галлюцинации LLM.
Галлюцинации - это не мистический сбой в сознании ИИ, а вполне предсказуемый побочный эффект его обучения.
Представьте, что перед моделью стоит задача бинарной классификации - определить, является ли предложенное утверждение корректным или нет. Математическая выкладка в исследовании проста: уровень ошибок генерации как минимум в 2 раза превышает уровень ошибок классификации. Если модель не способна надежно отличить факт от вымысла, она неизбежно будет этот вымысел генерировать.
Даже на идеально чистых данных статистические цели обучения подталкивают модель к генерации ошибок. Особенно это касается фактов, которые редко встречаются в обучающей выборке.
В работе вводится понятие
singleton rate
— доля фактов, которые появились в данных лишь один раз. Теоретический расклад показывает, что уровень галлюцинаций модели будет как минимум равен этой доле. Проще говоря, если 20% фактов о днях рождения в датасете встретились единожды, модель будет выдумывать дни рождения как минимум в 20% случаев.
Модель DeepSeek-V3, на просьбу назвать день рождения одного из авторов статьи, трижды выдала неверные даты:
03-07
, 15-06
и 01-01
. Ни одна из них не была даже близка к правильной (осенью). В другом тесте, где нужно было сосчитать количество букв
D
в слове DEEPSEEK
, та же DeepSeek-V3 выдавала 2
или 3
, а модели компании Марка Цукерберга и Claude 3.7 Sonnet доходили до 6
и 7
. При этом базовые модели после претрейна часто показывают отличную калибровку. Например, у предобученной GPT-4 ожидаемая ошибка калибровки составляла всего 0.007, что говорит о высокой статистической адекватности ее предсказаний.
Ответ на этот вопрос - в системе оценки. Большинство современных бенчмарков поощряют угадывание. Модели, по сути, постоянно находятся в режиме сдачи экзамена, где за правильный ответ дают 1 балл, а за пустой бланк или ответ
я не знаю
- 0. В такой системе оптимальная стратегия при неуверенности - только угадать. Любой шанс на правильный ответ лучше, чем гарантированный ноль.Эту гипотезу подтвердили анализом популярных оценочных наборов.
В GPQA, MMLU-Pro, Omni-MATH, SWE-bench и HLE используется строго бинарная система оценки (правильно/неправильно). Возможности получить частичный балл за честное признание в незнании там просто нет. Из 10 рассмотренных в исследовании популярных бенчмарков только один, WildBench, присуждает частичные баллы за ответы формата
я не знаю
. Остальные же фактически наказывают модель за отказ галлюцинировать, создавая эпидемию штрафов за неуверенность и поощряя ее выдавать правдоподобную ложь.OpenAI предлагает встраивать явные целевые уровни уверенности в рубрики, вводить поведенческую калибровку и оценивать модели по секциям с разными порогами уверенности.
Еще рекомендуют включают мониторинг
singleton-rate
на корпусе, измерение вероятности важных ответов, комбинирование RAG с верификацией фактов и изменение лидербордов чтобы ответы я не знаю
не штрафовались автоматически.@ai_machinelearning_big_data
#AI #ML #LLM #Research #OpenAI
Please open Telegram to view this post
VIEW IN TELEGRAM
👍7❤2🔥2