FRAT - Financial random academic thoughts
4.97K subscribers
241 photos
1 video
15 files
1.24K links
Academic research, macrofinance and crypto.

Contact me:
[email protected], @Oleg_Shibanov

Только личное мнение, без представления позиции организаций.
При перепечатке ссылка на канал обязательна.
Download Telegram
Как цифровизация уже поменяла экономику?

Статья ЕЦБ (апрель 2023) напоминает, что уже прошедшие процессы цифровизации принесли экономике. Основные выводы:

1) работы "в среднем" не исчезают при цифровизации, но их содержание меняется. На рынке труда "вымываются" средне-квалифицированные работы;
2) растёт неравенство доходов и богатства (в том числе из-за роста доли владельцев капитала);
3) видимо, развитие финтеха и изменения в электронных продажах (e-com) усиливают влияние денежно-кредитной политики.

И дальше много "полезных слов" про то, что людям нужно помогать, переобучать и т.п. Честно говоря, вопрос - как "искусственный интеллект" поменяет эти призывы...

#AI #Digital #Labor
Как может меняться компания под воздействием ИИ?

Статья (июнь 2023) смотрит на то, какие компании активно используют технологии искусственного интеллекта (ИИ), и как это влияет на свойства самой фирмы. Идея в том, что привлечение сотрудников, умеющих в ИИ, может снизить необходимость в менеджерах среднего звена. Вместо них могут более широко внедряться способы работы с данными.

Для этого авторы анализируют резюме сотрудников, а также объявления о позициях этих компаний. Период 2010-2018 с постепенным внедрением ИИ.

Результаты впечатляют:

1) активнее берут на ИИ-связанные позиции в компаниях, которые уже наняли больше сотрудников с PhD и из STEM (наука, технологии, инженерные специальности, математика);

2) структура таких ИИ-активных компаний становится "более плоской". Это означает, что становится больше сотрудников на начальных позициях, меньше на средних и высоких, при этом сдвиг происходит в сторону более образованных людей.

Вывод: мы ещё не видели полного эффекта влияния ИИ на рынок труда. Очевидно, что если ИИ становятся важнее, то компания обязана молодеть - потому что более взрослые люди не всегда знакомы с ИИ. Вероятно, что в ближайшее десятилетие подобная иерархическая структура не воспроизведётся, потому что все будут знать про ИИ, даже мы, взрослеющие люди.

#AI #Firms #Labor
Почему мы будем учить студентов пользоваться GigaChat или ChatGPT?

Потому что они помогают не только писать код (важно для курсов), но и в совсем простых задачах. Статья (июль 2023) демонстрирует, что алгоритмы улучшения текста исправляют качество резюме, а это приводит к более частым предложениям работы. Механизм - в "подтверждении способностей": если резюме написано грамотно, HR легче согласиться, что кандидат выглядит получше.

Коллеги, которые пока против использования, вынуждены будут признать большую пользу от этих помощников.

#AI #Labor
Рынок труда: теперь Писсаридес.

Дискуссия про навыки в мире искусственного интеллекта (ИИ) продолжается. Теперь высказался нобелевский лауреат Писсаридес. Кратко: изучать математику бесполезно, потому что в будущем останутся в основном профессии с эмоциональным интеллектом, человеческим общением и заботой друг о друге.

Звучит интересно. Но в чём проблема с этими предсказаниями: оценка влияния сейчас весьма предварительная. Если вы помните, ИТ-сектор также должен был значительно изменить профессии. Но как показал дальнейший опыт, эти изобретения стали дополняющими, а не заменяющими (см. статью Аджемоглу 2000). И поэтому рынок труда почти не изменился, просто дополнился компьютерными навыками.

Вывод: если студент склонен к математике, надо ей и заниматься. Если когда-то ИИ станут достаточно сильными для замены офисных сотрудников, мир станет настолько другим, что первое образование окажется неважным.

#Labor #AI
Инвестиции в ИИ: на уровне страны увеличивают неравенство?

Любопытная статья (октябрь 2023) проверяет влияние инвестиций в "искусственный интеллект" (ИИ) на экономические переменные. Авторы берут 86 стран и горизонт 2010-2019, и связывают инвестиции в ИИ с доходами граждан, производительностью экономики и т.п. Основные результаты такие: более высокие инвестиции в ИИ

1) связаны с ростом доли дохода людей из верхних 10% доходов и снижением доли дохода людей из нижних 10% дохода = "рост неравенства";
2) приводят к снижению общей занятости в экономике;
3) дают переток из "среднего уровня навыков" в "высокий уровень навыков" и менеджерские позиции;
4) увеличивают производительность (total factor productivity);
5) а наиболее сильное увеличение неравенства давали инвестиции в роботизацию, ИИ в стройке и связанные с интернетом сервисы.

Звучит как минимум любопытно. При этом авторы говорят, что их выводы едва ли применимы к моделям, которые захватывают рынок после 2022 и ChatGPT - вероятно, их влияние может быть ещё более существенным.

Но. Меня смущают подобные выводы на макроуровне. Дело в том, что 2010-е были временем большого эксперимента в экономиках мира, и надо контролировать на десятки переменных - ставки (низкие могут увеличивать неравенство), старение населения (может снижать занятость), образование (кажется, был рост зарплатной премии за университет по миру), и т.п. Более богатые страны могли позволить себе высокие инвестиции в ИИ - и при этом неравенство в них росло по множеству причин, включая огромную отдачу на идеи через венчурный капитал. Поэтому надо крепко думать про госполитику в отношении последствий ИИ, но не забывать, что главными источниками могут быть совсем не инвестиции в ИИ.

Вывод: интересно, но из макроданных сложно сделать выводы о причинно-следственных связях. Нужно заранее обдумывать, как реагировать на вытеснение людей из рынка труда с ростом использования ИИ.

(А находить эти статьи можно тут: https://t.iss.one/workingpaper)

#AI #Inequality #Labor
Предсказания зарплат в Великобритании: тоже неточные.

MPC рапортует (январь 2024), что их прогнозы по росту зарплат в Великобритании были существенно ниже реализаций в 2023 году. Интересно два момента:

1) обучение моделей происходит на данных с конца 1980-х до 2019;

2) одна из моделей предполагает, что долгосрочно (реальные) зарплаты будут расти по производительности труда - то есть что доля труда в распределении ВВП останется примерно постоянной.

Оба подхода достаточно сомнительны. Инфляционный период 2021-23 был уникальным по росту цен - примерно с 1970-х мы такого не видели. Поэтому брать данные только с 1980-х выглядит недостаточным.

Сходимость производительности и зарплат вообще вызывает недоумение. Это же известная проблема - что в среднем в развитых странах уже с 1980-х доля труда в ВВП скорее снижалась, чем оставалась постоянной.

Вывод: я что-то в задумчивости, то ли я что-то не понимаю, то ли часть моделей объективно не лучшие...

#Wages #Labor #UK
Возвращение в офисы и исход сотрудников в США.

Статья (май 2024) проверяет, что произошло с сотрудниками, которых компании попросили вернуться в офис после пандемии. И результаты довольно неожиданные: три крупных компании (Микрософт, Apple, SpaceX), которые первыми начали просить сотрудников возвращаться очно на работу, потеряли существенную часть менеджеров верхне-среднего звена. Вдобавок эти люди ушли в компании-конкуренты. И всё это происходило до больших увольнений в ИТ секторе.

Коллега из СКОЛКОВО написала колонку про "тихие увольнения" - видимо, гибкость гибридной работы в США остается важной частью культуры.

#US #Labor #IT
Снова про производительность и труд.

Аджемоглу продолжает исследовать историю. Статья (май 2024) показывает, как в первую индустриальную революцию развивалась производительность и зарплаты. Выводы говорят сами за себя:

1) Производство хлопка стало одним из крупнейших секторов экономики Великобритании, но реальные зарплаты в нём не росли десятилетиями;

2) Автоматизация производства привела к постоянному надзору за сотрудниками, низкой автономности работы и ухудшению их здоровья;

3) Сотрудники не могли выбивать рост зарплат, так как не было расширения рынка труда около автоматизирующихся отраслей (и некуда было идти);

4) Искусственный интеллект сегодня может также повысить среднюю производительность, но не увеличить доходы или занятость людей - будет "замена", а не "сотрудничество".

Это выводы как в книге. Но важно помнить об этом - рынок труда сложный, и от внедрения новых технологий можно получить рост неравенства, что пользы особо не принесёт.

#AI #Acemoglu #Labor
Чтение про конкурентоспособность Европы.

Вы наверняка уже видели отчёт Драги. Там для меня два ключевых вывода - Европа существенно пострадала от разрыва энергетических связей с Россией; и что для реального рывка требуется увеличить долю инвестиций в ВВП на 5 пп (!!!), а заодно всерьёз заняться технологическими исследованиями.

Лично у меня странное ощущение от чтения подобных текстов. "Нам нужно много сделать, чтобы двигаться вперёд" не вызывает большого интереса. Было бы хорошо показать, какие и на каких территориях проекты могут быть реализованы (в длинном тексте этого тоже нет, присутствует структурная история вида "давайте все цены соберём и покажем участникам").
В результате получилось "надо больше роста факторов производства", "нужно увеличение TFP (производительности)", "труд не будет подмогой" - то есть стандартные рассуждения про модель Солоу, не очень задорно.

#Labor #Investments #Europe #TFP
Меняющийся рынок труда в США: очередные прогнозы про ИИ.

Статья (январь 2025) проверяет, насколько быстро менялся рынок труда в США с 1880 года. Авторы обнаруживают, что стабильность была гораздо выше в последние 30 лет, чем до этого. Два очевидных примера:

1) в начале 20 века около 40% людей в США работали в с/х, а сейчас 2%;

2) в 1960 около половины сотрудников занимались производством и ручным трудом, а сейчас 20%.

Поэтому, по их мнению, время с 1990 по 2017 было одним из самых стабильных для работников. Пандемия внесла изменения, и они подчеркнули целых четыре сигнала про влияние ИИ на труд:

1) снижение "поляризации" рынка. Последние годы стало меньше "дешевых" рабочих мест и больше высокооплачиваемых сотрудников, до этого шло "удешевление";

2) рост в низкооплачиваемых местах в секторе услуг остановился (была мантра "нас заменят роботы, а мы будем задешево мыть посуду");

3) занятость в STEM (связанные с наукой, технологиями, инженерные или математические вещи) выросла более чем на 50% с 2010 года;

4) занятость в ритейле упала на 25% за 2013-2023. Видимо, тут онлайн помог.

Поэтому авторы надеются, что ИИ окажется новой "технологией общего назначения", но подозревают очень постепенное (за десятилетия) её внедрение. Первые знаки быстрых изменений видны - но пока неясно, относить их к перестройке рынка труда после пандемии, или влиянию ИИ.

#AI #Labor #US