FRAT - Financial random academic thoughts
4.89K subscribers
238 photos
1 video
15 files
1.23K links
Academic research, macrofinance and crypto.

Contact me:
[email protected], @Oleg_Shibanov

Только личное мнение, без представления позиции организаций.
При перепечатке ссылка на канал обязательна.
Download Telegram
Как можно выделять "главные компоненты" (PCA) из макрофинансовых данных?

Вы знаете, что у макроэкономистов короткие ряды (в России около 30 лет месячных данных, то есть 300 точек), при этом разных видов данных много (от инфляции и роста ВВП до курса валюты). Hamilton с коллегами предлагает новый способ автоматически выделять главные компоненты из этих многих серий данных (январь 2024). Основное отличие от других упражнений - применение OLS регрессий с лагами к любого вида, даже нестационарным, переменным, и затем выделение общей компоненты из остатков этих регрессий.

Авторы показывают, что итоговая "главная компонента" разумно работает со стационарными данными и сериями, стационарными в первых разностях. Наверное, для "сложных" данных с большой глубиной нестационарности метод не очень сработает, но в макрофинансовых данных работает хорошо. Итоговая переменная, видимо, хорошо связана с бизнес-циклом в США.

Вывод: интересный метод, будем пробовать. Hamilton вообще новатор последних лет - помним его статью "Why You Should Never Use the Hodrick-Prescott Filter". Кажется, наше со студенткой упражнение в этом году показывает, что в зависимости от детрендирования получаются очень разные результаты для оценки инфляционного процесса...

#Hamilton #US #Forecasts