Forwarded from Machinelearning
FlashRNN - библиотека, которая реализует традиционные RNN, такие как LSTM, GRU и сети Элмана, а также новейшую архитектуру sLSTM в CUDA и Triton.
В отличие от распространенных современных моделей архитектуры Transformers, RNN обладают возможностями отслеживания состояния, оставаясь актуальными для решения задач моделирования временных рядов и логического мышления.
FlashRNN предлагает два варианта оптимизации: чередующийся и объединенный.
За автоматизацию настройки параметров FlashRNN отвечает библиотека
ConstrINT
, которая решает задачи целочисленного удовлетворения ограничений, моделируя аппаратные ограничения в виде равенств, неравенств и ограничений делимости.Эксперименты с FlashRNN показали существенное увеличение скорости работы: до 50 раз по сравнению с PyTorch. FlashRNN также позволяет использовать большие размеры скрытых состояний, чем нативная реализация Triton.
# Install FlashRNN
pip install flashrnn
# FlashRNN employs a functional structure, none of the parameters are tied to the `flashrnn` function:
import torch
from flashrnn import flashrnn
device = torch.device('cuda')
dtype = torch.bfloat16
B = 8 # batch size
T = 1024 # sequence length
N = 3 # number of heads
D = 256 # head dimension
G = 4 # number of gates / pre-activations for LSTM example
S = 2 # number of states
Wx = torch.randn([B, T, G, N, D], device=device, dtype=dtype, requires_grad=True)
R = torch.randn([G, N, D, D], device=device, dtype=dtype, requires_grad=True)
b = torch.randn([G, N, D], device=device, dtype=dtype, requires_grad=True)
states_initial = torch.randn([S, B, 1, N, D], device=device, dtype=dtype, requires_grad=True)
# available functions
# lstm, gru, elman, slstm
# available backend
# cuda_fused, cuda, triton and vanilla
states, last_states = flashrnn(Wx, R, b, states=states_initial, function="lstm", backend="cuda_fused")
# for LSTM the hidden h state is the first of [h, c]
# [S, B, T, N, D]
hidden_state = states[0]
@ai_machinelearning_big_data
#AI #ML #RNN #FlashRNN
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
⚡️ Chatgpt слишком стремительно развивается.
Forwarded from Machinelearning
DepthLab - диффузионный механизм инпейнта карт глубины с двумя параллельными ветвями для задач заполнения 3D-сцен, генерации сцен на основе текстовых промптов, реконструкции с использованием DUST3R и заполнение глубины LiDAR.
Первая ветвь, Reference U-Net извлекает признаки из RGB-изображений, которые служат условием для второй ветви.
Вторая ветвь, Estimation U-Net, обрабатывает имеющиеся данные о глубине и маску, определяющую области, требующие восстановления. Признаки RGB, полученные из Reference U-Net, последовательно интегрируются в Estimation U-Net, что позволяет управлять процессом восстановления.
Взаимодействие между ветвями Reference U-Net и Estimation U-Net реализуется механизмом cross-attention, который использует CLIP encoder.
Архитектура DepthLab опирается на наработки Marigold и Stable Diffusion V2. Кодирование RGB-изображений и карт глубины в латентное пространство осуществляется VAE. Маска также кодируется с помощью VAE, что позволяет сохранить детальную информацию о форме и границах.
Обучение DepthLab проводилось на двух синтетических датасетах: Hypersim (54 тысячи обучающих образцов) и Virtual KITTI (20 тысяч обучающих образцов). Для расширения обучающей выборки использовались случайные искажения изображений и несколько стратегий маскирования: штрихи, окружности, квадраты и их комбинации.
Оценка качества восстановления проводилась на 5 наборах: NYUv2, KITTI, ETH3D, ScanNet, DIODE. В качестве метрик использовались абсолютная относительная ошибка (AbsRel) и точность в пределах δ1 = 1.25.
Результаты тестов демонстрируют, что DepthLab превосходит как дискриминативные (DiverseDepth, MiDaS, LeReS, Omnidata, HDN, DPT, DepthAnything, DepthAnythingV2), так и генеративные (Marigold, DepthFM, GeoWizard) методы в постоении карт глубины.
Для локального инференса потребуются модели:
# Clone repo
git clone https://github.com/Johanan528/DepthLab.git
cd DepthLab
# Create conda env
conda env create -f environment.yaml
conda activate DepthLab
# Run inference
cd scripts
bash infer.sh
@ai_machinelearning_big_data
#AI #ML #DepthLab
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
⚡️Khoj - мощный ИИ агент.
Позволяет получать ответы из Интернета или документов и статей.
Создавайте собственных агентов, планируйте автоматизацию, проводите глубокие исследования.
Легко интегрируется с любым онлайн или локальный LLM (gpt, claude, qwen, mistral).
https://github.com/khoj-ai/khoj
Позволяет получать ответы из Интернета или документов и статей.
Создавайте собственных агентов, планируйте автоматизацию, проводите глубокие исследования.
Легко интегрируется с любым онлайн или локальный LLM (gpt, claude, qwen, mistral).
https://github.com/khoj-ai/khoj
This media is not supported in your browser
VIEW IN TELEGRAM
⚡️ Новый веб-вьювер HDR и редактор для создания видеоклипов!
📺Web Viewer: https://srameo.github.io/projects/le3d/
🧑💻Github: https://github.com/Srameo/LE3D
#ComputerVision #3DReconstruction #GaussianSplatting
📺Web Viewer: https://srameo.github.io/projects/le3d/
🧑💻Github: https://github.com/Srameo/LE3D
#ComputerVision #3DReconstruction #GaussianSplatting
💥 Подборка годных ML плейлистов для
Обучения
1. Caltech CS156: Обучение на данных: https://youtube.com/playlist?list=PLD63A284B7615313A
2. Stanford CS229: Machine Learning: https://youtube.com/playlist?list=PLoROMvodv4rMiGQp3WXShtMGgzqpfVfbU
3. Прикладное машинное обучение: https://youtube.com/playlist?list=PLAqhIrjkxbuWI23v9cThsA9GvCAUhRvKZ
4. Введение в машинное обучение (Тюбинген): https://youtube.com/playlist?list=PL05umP7R6ij35ShKLDqccJSDntugY4FQT
5. Лекция по машинному обучению (Стефан Хармелинг): https://youtube.com/playlist?list=PLzrCXlf6ypbxS5OYOY3EN_0u2fDuIT6Gt
@neural
Обучения
1. Caltech CS156: Обучение на данных: https://youtube.com/playlist?list=PLD63A284B7615313A
2. Stanford CS229: Machine Learning: https://youtube.com/playlist?list=PLoROMvodv4rMiGQp3WXShtMGgzqpfVfbU
3. Прикладное машинное обучение: https://youtube.com/playlist?list=PLAqhIrjkxbuWI23v9cThsA9GvCAUhRvKZ
4. Введение в машинное обучение (Тюбинген): https://youtube.com/playlist?list=PL05umP7R6ij35ShKLDqccJSDntugY4FQT
5. Лекция по машинному обучению (Стефан Хармелинг): https://youtube.com/playlist?list=PLzrCXlf6ypbxS5OYOY3EN_0u2fDuIT6Gt
@neural
YouTube
Machine Learning Course - CS 156
This is an introductory course by Caltech Professor Yaser Abu-Mostafa on machine learning that covers the basic theory, algorithms, and applications. Machine...
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
Оказывается, вам просто нужно правильно стимулировать модель.
Читой воды обучение с подкреплением (RL) может научить модель думать и рефлексировать.
Мы возвращаемся в эпоху AlphaGo: играя в бесчисленные партии Go и максимально увеличивая функцию вознаграждения (выигрыш в игре), используя чистый RL, AlphaGo научился побеждать лучших игроков мира.
Похоже это будет эра LLM RL.
📕 Paper
@ai_machinelearning_big_data
#DeepSeek #deepseekr1 #reasoning #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
💰GAMA-Bench
Принятие решений - сложный процесс, требующий различных навыков, что делает его хорошим тестов для оценки больших языковых моделей (LLM).
В данной работе исследователи изучали процесс принятия решений LLM через призму теории игр.
Существующие оценки в основном сосредоточены на случаях с двумя игроками, где LLM соревнуется с другим.
GAMA(γ)-Bench, новую структура для оценки способностей LLM в многоагентных средах через призму теории игр.
Он включает в себя восемь сценариев из классической теории игр и динамическую схему подсчета баллов, специально разработанную для количественной оценки производительности LLM.
γ-Bench очень гибкие настройки игры, что позволяет адаптировать систему подсчета баллов к различным параметрам игры, чтобы всесторонне оценить стратегии принятия решений
▪Статья: https://arxiv.org/abs/2403.11807
▪Код: https://github.com/CUHK-ARISE/GAMABench
Принятие решений - сложный процесс, требующий различных навыков, что делает его хорошим тестов для оценки больших языковых моделей (LLM).
В данной работе исследователи изучали процесс принятия решений LLM через призму теории игр.
Существующие оценки в основном сосредоточены на случаях с двумя игроками, где LLM соревнуется с другим.
GAMA(γ)-Bench, новую структура для оценки способностей LLM в многоагентных средах через призму теории игр.
Он включает в себя восемь сценариев из классической теории игр и динамическую схему подсчета баллов, специально разработанную для количественной оценки производительности LLM.
γ-Bench очень гибкие настройки игры, что позволяет адаптировать систему подсчета баллов к различным параметрам игры, чтобы всесторонне оценить стратегии принятия решений
▪Статья: https://arxiv.org/abs/2403.11807
▪Код: https://github.com/CUHK-ARISE/GAMABench
Forwarded from Machinelearning
💥Релиз Qwen2.5-1M!
Теперь модель поддерживает контекст длиной 1 МИЛЛИОН ТОКЕН токенов 🔥
⭐️ Доступны 2 модели: Qwen2.5-7B-Instruct-1M и Qwen2.5-14B-Instruct-1M.
Доступен подробный технический отчет о серии Qwen2.5-1M! 📊
📖 Технический отчет: https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2.5-1M/Qwen2_5_1M_Technical_Report.pdf
📄 Блог: https://qwenlm.github.io/blog/qwen2.5-1m/
🚀 Потестировать можно здесь: https://chat.qwenlm.ai
🤗 Huggingface: https://huggingface.co/collections/Qwen/qwen25-1m-679325716327ec07860530ba
▪ Modelscope: https://modelscope.cn/collections/Qwen25-1M-d6cf9fd33f0a40
@ai_machinelearning_big_data
#qwen #opensource #ml #llm
Теперь модель поддерживает контекст длиной 1 МИЛЛИОН ТОКЕН токенов 🔥
⭐️ Доступны 2 модели: Qwen2.5-7B-Instruct-1M и Qwen2.5-14B-Instruct-1M.
Доступен подробный технический отчет о серии Qwen2.5-1M! 📊
📖 Технический отчет: https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2.5-1M/Qwen2_5_1M_Technical_Report.pdf
📄 Блог: https://qwenlm.github.io/blog/qwen2.5-1m/
🚀 Потестировать можно здесь: https://chat.qwenlm.ai
🤗 Huggingface: https://huggingface.co/collections/Qwen/qwen25-1m-679325716327ec07860530ba
▪ Modelscope: https://modelscope.cn/collections/Qwen25-1M-d6cf9fd33f0a40
@ai_machinelearning_big_data
#qwen #opensource #ml #llm
Forwarded from Machinelearning
Alibaba релизнули еще одну модель: Qwen2.5-Max
- MoE
- предварительно обученная на масштабных датасетах и пост-обученная с помощью SFT и RLHF
- превосходит DeepSeek V3 на бенчмарках: Arena Hard, LiveBench, LiveCodeBench, GPQA-Diamond
- Может генерить видео, картинки, поддерживает поиск в интернете.
📖 Релиз: https://qwenlm.github.io/blog/qwen2.5-max/
💬 Chat: https://chat.qwenlm.ai (choose Qwen2.5-Max as the model)
⚙️ API: https://alibabacloud.com/help/en/model-studio/getting-started/first-api-call-to-qwen?spm=a2c63.p38356.help-menu-2400256.d_0_1_0.1f6574a72ddbKE
🤗 HF: https://huggingface.co/spaces/Qwen/Qwen2.5-Max-Demo
#Qwen #ml #llm #Alibaba #opensource
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
OpenAI сегодня сообщила в своем аккаунте X (Twitter) о том, что модели o1 и о3-mini теперь поддерживают загрузку файлов и изображений, а дневной лимит загрузок для o3-mini-high увеличен в 7 раз для пользователей Plus до 50 в день.
x.com
YouTube объявил об интеграции новой модели генерации видео Veo 2 в функцию Dream Screen, что позволит пользователям создавать уникальные AI-видео для Shorts на основе текстового запроса. Veo 2 может создать видео в различных стилях и тематиках, учитывая реальную физику и движения человека. Она позволяет указывать стиль, ракурс или кинематографический эффект.
Чтобы использовать новую функцию, нужно открыть камеру Shorts, нажать "Add", затем "Create", ввести запрос и выбрать длину видео. YouTube автоматически пометит ватермаркой SynthID созданный таким образом контент. Возможность уже доступна в США, Канаде, Австралии и Новой Зеландии, расширение - в планах.
blog.youtube
Anthropic готовится к выпуску новой модели, объединяющей возможности традиционной LLM с расширенными функциями рассуждения. Ожидается, что модель будет доступна в ближайшие недели и ориентирована на корпоративных клиентов.
Ключевая особенность новой модели - переменное распределение ресурсов, позволяющее пользователям регулировать вычислительную мощность, используемую моделью для каждой задачи, с помощью простого слайдера. На минимальном уровне модель функционирует как стандартная LLM без цепочки рассуждений.
theinformation.com
xAI находится на финальной стадии разработки Grok 3, новой версии своего чат-бота, выпуск которого ожидается в течение одной-двух недель. По словам Илона Маска, Grok 3 обладает очень мощными возможностями рассуждения и превосходит все известные модели. Grok 3 позиционируется как конкурент ChatGPT, Gemini, Claude, Mistral AI и Llama.
Модель была обучена с использованием синтетических данных и способна анализировать собственные ошибки, стремясь к большей логической последовательности путем пересмотра и перекрестной проверки данных. Musk отметил, что Grok 3 временами кажется "пугающе умным".
seekingalpha.com
OLMoE, iOS-приложения с полностью открытым исходным кодом, которое позволяет пользователям запускать современные языковые модели непосредственно на своих устройствах без необходимости подключения к Интернету. Приложение доступно для загрузки в Apple App Store или может быть собрано из исходного кода из репозитория Ai2 на Github.
Приложение работает на новых устройствах Apple, от iPhone 15 Pro и новее и iPad серии M, из-за потребности в 8 ГБ памяти для модели OLMoE. Модель была оптимизирована с использованием квантования Q4_K_M. OLMoE представляет собой продолжение стремления Ai2 к открытости в разработке ИИ. На iPhone 16 Pro инференс достигает 41 токена в секунду.
allenai.org
Главное:
Используйте разделители: Markdown, XML-теги и заголовки помогают чётко структурировать вводимые данные.
Различие моделей:
Модели рассуждения (например, o1, o3-mini) оптимизированы для детального планирования, анализа документов и визуальной интерпретации.
GPT-модели (например, GPT-4o) ориентированы на скорость и экономию ресурсов для хорошо определённых задач.
Практическое применение:
Модели рассуждения отлично справляются с уточнением неясных запросов, извлечением ключевых деталей из объёмных данных и многоступенчатым планированием (например, при код-ревью).
Рекомендации по запросам:
Используйте короткие, ясные и структурированные запросы с явными ограничениями. Излишне подробные инструкции "chain-of-thought" не требуются, так как модели рассуждают внутренне.
Post
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM