Machine learning Interview
24.4K subscribers
1.04K photos
69 videos
12 files
701 links
Разбираем вопросы с собеседований по Machine Learning, Data Science, Deep Learning и Нейронным сетям, Python.

Вопросы - @notxxx1


@itchannels_telegram -🔥лучшие it каналы

РКН: clck.ru/3FmwRz
Download Telegram
Forwarded from Machinelearning
⚡️ OpenAI релизнули новую модель OpenAI o1, которая в разы мощнее GPT-4o.

Тот самый секретны проект, над которым так долго работала компания.

Доступ обещают дать уже сегодня.

@ai_machinelearning_big_data

#openai #chatgpt
Forwarded from Machinelearning
⚡️ OpenAI Swarm: Экспериментальный фреймворк для оркестрации мультиагентных систем.

Swarm - это экспериментальный фреймворк, разработанный командой OpenAI Solutions, для создания, оркестрации и развертывания многоагентных систем. Фреймворк фокусируется на упрощении координации, запуска, контроля и тестирования агентов.

Основная цель Swarm - продемонстрировать паттерны, описанные в Orchestrating Agents: Handoffs & Routines cookbook.

Фреймворк построен на двух основных абстракциях: агентах (Agent) и передачах управления (handoffs):

Агент - это набор инструкций и функций, который может передавать выполнение другим агентам. Его можно использовать для описания конкретного рабочего процесса или шага (например, последовательность шагов, сложный поиск, одноэтапное преобразование данных и так далее).

Передача управления — это процесс, при котором агент может передать запрос другому агенту, возвращая его в функцию. В процессе передачи управления также происходит обновление переменных контекста, что позволяет вернуть более полный объект Result.

▶️В репозитории собраны функциональные примеры Swarm:

🟢basic - простые примеры настройки, вызова функций, передача данных и контекстные переменные;

🟢traige agent - пример роя с агентом сортировки, который принимает пользовательские данные и решает, ответить ли на запрос напрямую или передать его агенту по продажам или возврату денег;

🟢weather agent - погодный агент с вызовом функций (запрос по городу и отправка на e-mail);

🟢airlines - мультиагентный пример обработки клиентских запросов в контексте авиакомпании (сортировка запросов, изменения рейсов, отмены бронирований и случаи потери багажа);

🟢support_bot - клиентский бот центра поддержки с несколькими инструментами;

🟢personal shopper - пример роя агентов персонального торгового агента, который может помогать совершать покупки и возвращать заказы;

⚠️ Swarm не использует API Assistants и полностью работает на API Chat Completions.

⚠️ Swarm не предназначен для промышленного использования и не имеет официальной поддержки.

▶️ Локальная установка и запуск:

# Install from PIP
pip install git+https://github.com/openai/swarm.git

# Usage
from swarm import Swarm, Agent
client = Swarm()

def transfer_to_agent_b():
return agent_b

agent_a = Agent(
name="Agent A",
instructions="You are a helpful agent.",
functions=[transfer_to_agent_b],
)

agent_b = Agent(
name="Agent B",
instructions="Only speak in Haikus.",
)

response = client.run(
agent=agent_a,
messages=[{"role": "user", "content": "I want to talk to agent B."}],
)

print(response.messages[-1]["content"])


📌Лицензирование : MIT License.


🖥GitHub
🟡Orchestrating Agents Cookbook


@ai_machinelearning_big_data

#AI #ML #Agents #OpenAI #Swarm
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM