This media is not supported in your browser
VIEW IN TELEGRAM
На втором этапе повышается согласованность между этими изображениями.
Этот подход позволяет получать качественную 3D-реконструкцию сцены без дополнительной тренировки моделей.
@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
Keras Hub – это новая унифицированная библиотека для предобученных моделей, которая объединяет архитектуры NLP и CV, предоставляя разработчикам доступ к набору моделей в рамках единой платформы Keras.
Keras Hub упрощает поиск, использование и публикацию моделей, а также поддерживает функции LoRA, квантования и многоузловое обучение для работы с большими наборами данных.
Для начала работы с Keras Hub достаточно установить библиотеку с помощью команды
pip install --upgrade keras-hub.
Keras Hub предоставляет доступ к моделям: Gemma, PaliGemma и Stable Diffusion 3.
Также доступны новые функции для разработчиков KerasCV: встроенная предварительная обработка и функции потерь, доступные через
keras.losses.<loss_function>.
▪️Блог: developers.googleblog.com
▪️Ознакомьтесь с документацией: https://keras.io/keras_hub/
▪️Ознакомьтесь с руководствами по началу работы с KerasHub: https://keras.io/guides/keras_hub/
▪️Поэкспериментируйте с предварительно подготовленными моделями: https://keras.io/api/keras_hub/models/
▪️Изучите исходный код: https://github.com/keras-team/keras-hub/
▪️Ознакомьтесь с Keras на Kaggle: https://www.kaggle.com/organizations/keras
@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
⚙️ Яндекс представил четвертое поколение больших языковых моделей YandexGPT
Новая линейка генеративных моделей Яндекса лучше отвечает на вопросы, решает более сложные запросы и умеет рассуждать пошагово. Так, качество ответов YandexGPT 4 Pro улучшилось в 70% случаев по сравнению с предыдущей версией. В статье на Хабре команда Яндекса рассказала, как обучала YandexGPT 4, и показала результаты замеров качества и сравнения с другими моделями.
◾️ Хабр
@machinelearning_interview
Новая линейка генеративных моделей Яндекса лучше отвечает на вопросы, решает более сложные запросы и умеет рассуждать пошагово. Так, качество ответов YandexGPT 4 Pro улучшилось в 70% случаев по сравнению с предыдущей версией. В статье на Хабре команда Яндекса рассказала, как обучала YandexGPT 4, и показала результаты замеров качества и сравнения с другими моделями.
◾️ Хабр
@machinelearning_interview
Forwarded from Data Science
Forwarded from Data Secrets
Улучшенная версия BPR
В рекомендациях, как известно, бейзлайн побить обычно сложно, и часто старые добрые модели работают гораздо лучше новых, если уделить достаточно внимания деталям.
Так вышло и в этом случае. BPR (Bayesian Personalized Ranking) была изобретена еще в 2012 году, и за 12 лет расплодилось куча ее реализаций: в каждой библиотеке своя, у кого-то работают похуже, у кого-то получше. А у ресерчеров из T-Bank AI Research получилось создать новый золотой стандарт – SOTA версию алгоритма.
Ребята пересмотрели и доработали все компоненты BPR, и, учитывая влияние каждого из параметров, пересобрали эффективную реализацию. Для этого, кстати, понадобилось более 200 000 GPU-часов и 15 000 экспериментов😱
В итоге в некоторых случаях она превзошла другие модели почти на 50% по точности (в частности, популярную реализацию из RecBole). Это не все: модель обошла даже хайповую Mult-VAE от Netflix и оказалась точнее на 10%!
Работу, кстати, уже презентовали на ACM RecSys в Италии. Подробное описание модели и результаты экспериментов доступны в статье Revisiting BPR: A Replicability Study of a Common Recommender System Baseline.
Исходный код и дополнительные материалы можно найти на GitHub.
В рекомендациях, как известно, бейзлайн побить обычно сложно, и часто старые добрые модели работают гораздо лучше новых, если уделить достаточно внимания деталям.
Так вышло и в этом случае. BPR (Bayesian Personalized Ranking) была изобретена еще в 2012 году, и за 12 лет расплодилось куча ее реализаций: в каждой библиотеке своя, у кого-то работают похуже, у кого-то получше. А у ресерчеров из T-Bank AI Research получилось создать новый золотой стандарт – SOTA версию алгоритма.
Ребята пересмотрели и доработали все компоненты BPR, и, учитывая влияние каждого из параметров, пересобрали эффективную реализацию. Для этого, кстати, понадобилось более 200 000 GPU-часов и 15 000 экспериментов
В итоге в некоторых случаях она превзошла другие модели почти на 50% по точности (в частности, популярную реализацию из RecBole). Это не все: модель обошла даже хайповую Mult-VAE от Netflix и оказалась точнее на 10%!
Работу, кстати, уже презентовали на ACM RecSys в Италии. Подробное описание модели и результаты экспериментов доступны в статье Revisiting BPR: A Replicability Study of a Common Recommender System Baseline.
Исходный код и дополнительные материалы можно найти на GitHub.
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
Репозиторий Github облачного хостинг-провайдера Lambda Labs c исчерпывающим руководством по лучшим практикам распределенного обучения, диагностике часто возникающих ошибок, эффективном использовании доступных ресурсов и приемам логгирования в stdout/stderr и wandb.
Вопросы, на которые отвечает это руководство:
Руководство состоит из последовательных глав, каждая из которых содержит
readme
и скрипт train_llm.py
. В
readme
содержатся описания глав, а каждый из обучающих скриптов нацелен на обучение каузальной языковой модели.# Clone repo
git clone https://github.com/LambdaLabsML/distributed-training-guide.git
# Create venv
cd distributed-training-guide
python3 -m venv venv
source venv/bin/activate
python -m pip install -U pip
pip install -U setuptools wheel
pip install -r requirements.txt
@ai_machinelearning_big_data
#AI #ML #LLM #Github #Guide
Please open Telegram to view this post
VIEW IN TELEGRAM
Google DeepMind представила SynthID-Text, систему водяных знаков для маркировки текста, сгенерированного ИИ, которая позволяет определить его происхождение без ущерба для качества и скорости генерации текста.
Система работает путем незаметного для человека изменения некоторых слов в выводе чат-бота, создавая "статистическую подпись", которую может обнаружить детектор SynthID. SynthID-Text уже интегрирована в чат-бот Google Gemini и доступна разработчикам и компаниям в открытом доступе.
Система не является панацеей: значительное редактирование текста или его перефразирование другим чат-ботом может скрыть водяной знак.
deepmind.google
@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
PANGEA - это модель с 7.94 млрд. параметров на архитектуре LLaVA-Next и с Qwen2-7B-Instruct в качестве LLM-основы, которая была обученная на инструктивном датасете PANGEAINS.
PANGEA предназначена для "преодоления" культурных и языковых барьеров в задачах визуального понимания в задачах мультимодального чата, создания аннотаций к изображениям, понимания контекста культурных особенностей, обработке многоязычных VQA и рассуждений на разные темы.
Инструктивный датасет PANGEAINS состоит из 6 млн. мультимодальных инструкций на 39 языках. Перевод инструкций с английского языка на другие выполнялся с помощью Gemini 1.5 Pro.
Оценка PANGEA проводилась с использованием набора тестов PANGEABENCH(14 наборов данных на 47 языках) .
PANGEA продемонстрировала значительные улучшения в кросс-лингвистическом и кросс-культурном понимании.
Репозиторий PANGEA на Github содержит подробные инструкции и скрипты по установке, тонкой настройке, оценке результатов обучения и примеры разметки данных для файнтюна.
@machinelearning_interview
#AI #ML #MMLM #Pangea
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
🧬 GEMCODE: Генеративный метод для разработки сокристаллов с улучшенной таблетируемостью.
GEMCODE - это конвейер, разработанный специалистами Ивановского государственного химико-технологического университета, для ускоренной разработки действующих веществ лекарственных средств, позволяющий быстро генерировать уникальные и валидные химические структуры коформеров с высокой вероятностью образования сокристаллов и целевыми профилями таблетируемости.
GEMCODE основан на гибридизации генеративных моделей и эволюционной оптимизации, что позволяет проводить более широкий поиск в целевом химическом пространстве.
Для обучения моделей использовался набор данных, состоящий из 1,75 млн. химических структур из базы данных ChEMBL, и специализированный набор данных, содержащий 4227 уникальных структур коформеров.
Для прогнозирования механических свойств сгенерированных молекул была использована библиотека GOLEM и разработанные модели ML.
GEMCODE состоит из четырех основных компонентов:
1) Генерация кандидатов коформеров: Обученные генеративные модели (GAN, T-VAE, T-CVAE) создают SMILES-представления структур, подобных коформерам.
2) Прогнозирование механических свойств: Сгенерированные молекулы и терапевтические соединения подаются в обученные ML-модели, которые предсказывают механические свойства потенциальных сокристаллов.
3) Эволюционная оптимизация: Эволюционный алгоритм в сочетании с ML- моделями улучшает профили таблетируемости сгенерированных коформеров.
4) Ранжирование по вероятности образования сокристаллов: GNN оценивает и ранжирует пары лекарств и коформеров в соответствии с вероятностью образования сокристаллов.
Для оценки вероятности образования сокристаллов применялась предварительно обученная GNN CCGNet.
Эксперименты показали, что:
T-CVAE генерирует наибольшее количество кандидатов коформеров с целевыми свойствами таблетируемости (5,63%).
Эволюционная оптимизация значительно повышает вероятность того, что коформеры будут обладать желаемыми механическими свойствами.
GEMCODE успешно обнаружил экспериментально подтвержденные коформеры для никорандила, ривароксабана и парацетамола, а также предсказал новые потенциальные коформеры для никорандила.
▪Arxiv
▪Github
@machinelearning_interview
GEMCODE - это конвейер, разработанный специалистами Ивановского государственного химико-технологического университета, для ускоренной разработки действующих веществ лекарственных средств, позволяющий быстро генерировать уникальные и валидные химические структуры коформеров с высокой вероятностью образования сокристаллов и целевыми профилями таблетируемости.
GEMCODE основан на гибридизации генеративных моделей и эволюционной оптимизации, что позволяет проводить более широкий поиск в целевом химическом пространстве.
Для обучения моделей использовался набор данных, состоящий из 1,75 млн. химических структур из базы данных ChEMBL, и специализированный набор данных, содержащий 4227 уникальных структур коформеров.
Для прогнозирования механических свойств сгенерированных молекул была использована библиотека GOLEM и разработанные модели ML.
GEMCODE состоит из четырех основных компонентов:
1) Генерация кандидатов коформеров: Обученные генеративные модели (GAN, T-VAE, T-CVAE) создают SMILES-представления структур, подобных коформерам.
2) Прогнозирование механических свойств: Сгенерированные молекулы и терапевтические соединения подаются в обученные ML-модели, которые предсказывают механические свойства потенциальных сокристаллов.
3) Эволюционная оптимизация: Эволюционный алгоритм в сочетании с ML- моделями улучшает профили таблетируемости сгенерированных коформеров.
4) Ранжирование по вероятности образования сокристаллов: GNN оценивает и ранжирует пары лекарств и коформеров в соответствии с вероятностью образования сокристаллов.
Для оценки вероятности образования сокристаллов применялась предварительно обученная GNN CCGNet.
Эксперименты показали, что:
T-CVAE генерирует наибольшее количество кандидатов коформеров с целевыми свойствами таблетируемости (5,63%).
Эволюционная оптимизация значительно повышает вероятность того, что коформеры будут обладать желаемыми механическими свойствами.
GEMCODE успешно обнаружил экспериментально подтвержденные коформеры для никорандила, ривароксабана и парацетамола, а также предсказал новые потенциальные коформеры для никорандила.
▪Arxiv
▪Github
@machinelearning_interview
freecourses
Please open Telegram to view this post
VIEW IN TELEGRAM
@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
Он будет полезен тем, кто уже имеет базовые теоретические знания, готовится к собеседованию или просто хочет освежить свои навыки работы с синтаксисом.
Вот что мне особенно понравилось:
— Все задания направлены на практическое применение знаний. Они приближены к реальным задачам и охватывают популярные вопросы с собеседований.
— Очень удобно работать с таблицами и составлять запросы.
— Задания распределены по темам и уровням сложности, а также предусмотрены полезные подсказки.
Сохраняйте, чтобы не потерять! 👍
📌 Cсылка
#sql #practice
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
#курс #machinelearning #claude
@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM