Machine learning Interview
31.6K subscribers
1.1K photos
85 videos
13 files
752 links
Разбираем вопросы с собеседований по Machine Learning, Data Science, Deep Learning и Нейронным сетям, Python.

Вопросы - @notxxx1


@itchannels_telegram -🔥лучшие it каналы

РКН: clck.ru/3FmwRz
Download Telegram
Forwarded from Machinelearning
📌 Практическое руководство по "подводным камням" больших языковых моделей с примерами.

Открытый препринт книги Тарсиса Соуза (Tharsis Souza), PhD Лондонсого университета, в которой представлен критический анализ проблем и ограничений, возникающих у инженеров и руководителей технических проектов при разработке приложений на основе LLM.

Цель книги, по заявлению автора – помочь создавать надежные и безопасные системы на основе LLM, избегая распространенных ошибок.

Она ориентирована на разработчиков, технических менеджеров проектов и технических руководителей, стремящихся к углубленному пониманию и преодолению практических трудностей, связанных с внедрением LLM.

В отличие от преобладающего дискурса, акцентирующего возможности LLM, книга сосредоточена на практических сложностях и потенциальных ошибках реализации, предлагая подробное руководство по их преодолению.

В книге рассматриваются проблемы: структурной ненадежности, управления входными данными, тестирования, аспектов безопасности и элайнмента, зависимости от поставщиков и оптимизации затрат.

Книга сопровождается репозиторием с практическими примерами на Python, анализом реальных сценариев и решений.

▶️ Содержание:

🟢Предисловие
🟢О книге
🟢Глава 1: Пробелы в оценках
🟢Глава 2: Структурированный вывод
🟢Глава 3: Управление входными данными
🟢Глава 4: Безопасность
🟢Глава 5: Элайнмент на основе предпочтений
🟢Глава 6: Локальные модели на практике
🟠Глава 7: Парадокс снижения стоимости (не опубликовано)
🟠Глава 8: Границы (не опубликовано)
🟠Приложение: Инструменты и ресурсы (не опубликовано)

🟡Страница проекта
🖥Github.com


@ai_machinelearning_big_data

#AI #ML #LLM #Book #Tutorial
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍51🔥1
Forwarded from Machinelearning
ML-комьюнити о крупнейших запусках LLM начала 2025 года:

✔️ DeepSeek — революция или переоцененный запуск?

Запуск китайской модели всколыхнул всю индустрию, вызвав неоднозначную реакцию экспертов. CEO Anthropic Дарио Амодей отмечает, что Claude 3.5 Sonnet, обученный за несколько десятков миллионов долларов, значительно опережает DeepSeek по многим показателям, плюс у модели нет никаких барьеров против генерации чувствительной информации. Демис Хассабис, генеральный директор Google DeepMind, считает DeepSeek лучшей работой китайских исследователей, но не видит в ней новых научных достижений.

✔️ Grok 3 — Маск не дотянул

ИИ-исследователь и профессор Пенсильванского университета Итан Моллик признал, что xAI очень быстро растёт, но Grok 3 пока точно не является лучшей моделью на рынке. Она превосходит некоторые модели OpenAI, но не o3. CTO Caylent Рэнделл Хант обнаружил ряд проблем с Grok 3: уязвимость к джейлбрейкам, неуместную саркастичность, медлительность и частые ошибки в ответах. По его словам, даже простые логические тесты оказались ей не под силу, что делает модель практически бесполезной для бизнес-задач. При этом CEO Replit Амджад Масад назвал Grok 3 передовой моделью и огромным достижением.

✔️ GPT-4.5 — не оправдал ожиданий экспертов

Релиз GPT-4.5 от OpenAI получил смешанные отзывы в профессиональном сообществе. Соучредитель OpenAI и бывший глава Tesla AI Андрей Карпатый отметил, что GPT-4.5 напомнил ему GPT-4 на момент релиза — он увидел потенциал этой модели. В посте на X он сказал, что при использовании GPT-4.5 «всё стало немного лучше, и это здорово, но не совсем так, как можно было бы ожидать». В более резких выражениях высказался известный критик Гэри Маркус, назвавший модель «пустышкой». Генеральный директор Hugging Face Клемент Деланж также остался недоволен, охарактеризовав GPT-4.5 как «так себе» и раскритиковав закрытость исходного кода.

✔️ YandexGPT 5 — что в России?

Виктор Тарнавский, директор по ИИ Т-Банка, отметил, что в Яндексе выложили Lite-версию модели в опенсорс, а пайплайн Pro-версии инициализировали весами от Qwen 2.5. По его мнению, это правильное решение, позволяющее избежать бессмысленной траты ресурсов. При этом, пишет Тарнавский, разработчики делают не файнтюн, а полный цикл обучения модели — просто стартуют претрейн не с нулевых весов. По опубликованным бенчмаркам, модели показывают хорошие результаты. В СМИ также писали, что Яндекс работает над ризонингом. Максим Болотских, директор ИИ в Яков и Партнёры (ex-McKinsey), прокомментировал, что ежегодные совокупные затраты на разработку подобного функционала могут составлять 10 млрд рублей и более, и такого рода модели могут монетизироваться не только классическими подписками B2C пользователей, но и значимо лучше решать задачи В2В-сегмента.

✔️ Gemini 2.0 Flash — лучшее соотношение цена/качество

Релиз Gemini 2.0 Flash от Google получил восторженные отклики экспертов. Тим Брукс, ИИ-исследователь в Google DeepMind, высоко оценил встроенную функцию генерации изображений с возможностью визуальной цепочки рассуждений. Соучредитель и бывший глава Intel AI Райан Карсон назвал модель "умной, быстрой и дешёвой", отметив отличную производительность при тестировании через API. Мэтт Шумер, соучредитель и генеральный директор компании OthersideAI, подчеркнул, что по большинству бенчмарков Gemini 2.0 Flash приближается к Claude 3.5 Sonnet и даже превосходит его в бенчмарке MATH, сохраняя при этом значительное ценовое преимущество.

✔️ Claude 3.7 — достойный шаг вперёд при умеренных затратах

Релиз Claude 3.7 от Anthropic получил преимущественно положительные отзывы экспертов. Сэм Альтман и Дарио Амодей подчеркнули экономическую эффективность разработки — обучение Claude 3.7 Sonnet обошлось лишь в несколько десятков миллионов долларов, что значительно меньше затрат на GPT-4. Артём Санакоев, ИИ-исследователь в Meta Generative AI и автор канала "эйай ньюз", выделил инновационный подход Anthropic к рассуждениям модели — в отличие от конкурентов, Claude использует единую модель без отдельного reasoning тюна.

@ai_machinelearning_big_data

#AI #ML #LLM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍109🔥3👏2
Forwarded from Machinelearning
🌟 KBLaM: новая архитектура интеграции знаний для языковых моделей от Microsoft Research.

Microsoft Research представила KBLaM - архитектуру, которая решает ключевую проблему LLM — добавление новых внешних знаний. В отличие от традиционных методов файнтюна и RAG, KBLaM кодирует новые для LLM структурированные данные в виде векторных пар «ключ-значение», встраивая их напрямую в слои внимания модели. Это позволяет избежать дорогостоящего дообучения и построение дополнительных модулей, сохраняя линейную масштабируемость даже для баз знаний в 10 000 триплетов.

В KBLaM триплет — это структурированный элемент знания, состоящий из трех компонентов: сущности, свойства и значения. Например, в утверждении «Москва — столица России» сущностью выступает «Москва», свойством — «столица», а значением — «Россия».


В основе KBLaM - «прямоугольный механизм внимания»: языковые токены взаимодействуют с токенами знаний, но не наоборот. Такая структура сокращает вычислительные затраты до линейных, позволяя обрабатывать эквивалент 200 тыс. токенов на одном GPU. При этом модель динамически обновляет знания без пересчёта всей базы — достаточно изменить один триплет.

Эксперименты с KBLaM показали, что он не только эффективен, но и прозрачен: веса внимания визуализируют, какие факты использует модель. Например, при запросе о медицинском диагнозе высокие оценки внимания к соответствующим триплетам снижают риск «галлюцинаций», при этом, если ответ на запрос лежит вне базы знаний, модель отказывается на него отвечать.

Как заявляют авторы, KBLaM — не просто шаг к умным LLM, а мост между обученными на базовых знаниях моделями и реальным миром, где знания постоянно обновляются.

В опубликованном на Github коде для применения KBLaM поддерживаются модели с HF:

🟢Llama-3-8B-Instruct;
🟢Llama-3.2-1B-Instruct;
🟢Phi-3-mini-4k-instruct.

и эмбединги для генерации базы знаний:

🟠text-embedding-ada-002;
🟠all-MiniLM-L6-v2.

⚠️ Чтобы добавить поддержку других моделей, необходимо отредактировать скрипты обработки моделей и включить в них адаптер, подобный llama_model.py в src/kblam/models.


📌Лицензирование: MIT License.


🟡Статья
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #MicrosoftResearch #KBLaM
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥19👍4❤‍🔥21🥰1
🚀 Релиз от NVIDIA: Llama-Nemotron-Ultra 253B!

Llama-Nemotron-Ultra — модель с 253B параметрами, специально заточенная под задачи reasoning .

📦 Что внутри:

- LLaMA 405B, радикально преобразованная с помощью NAS pruning

- Пост-тренинг с фокусом на reasoning: SFT + RL

- Вычисления в FP8 для производительности без потери качества

- Open weights + открытые данные

🧠 Подходит для сложных задач рассуждения, настройки под кастомные пайплайны и исследований в области AGI.

🔗 Попробовать: https://huggingface.co/nvidia/Llama-3_1-Nemotron-Ultra-253B-v1

#LLM #NVIDIA #OpenWeights #Reasoning #RLHF #FP8 #AIresearch #HuggingFace

@machinelearning_interview - подписаться
👍93🔥1🤣1
📄 Scaling Laws for Native Multimodal Models

📌 Исследователи из Sorbonne и Apple проанализировали 457 мультимодальных моделей, чтобы понять, как масштабируются нативные мультимодальные архитектуры (NMM) — обученные с нуля, а не через “приклейку” vision-энкодеров к LLM.

🔍 Главное:
Late-fusion (классика с vision encoder + LLM) ≠ обязательно лучше.
Early-fusion модели, в которых всё учится совместно с нуля — обгоняют по качеству при меньшем количестве параметров, обучаются быстрее и проще в продакшене.
Добавление Mixture of Experts (MoE) даёт прирост — модели учат модальность-специфичные веса, сохраняя ту же цену инференса.
Scaling laws (законы масштабирования) у NMM — почти те же, что у LLM. Можно планировать бюджеты и рост моделей аналогично.

⚠️ Ограничения:
— Пока неясно, как точно это поведение переносится на downstream-задачи.
— Нужно больше экспериментов с разными пропорциями мультимодальных данных.
— Для early-fusion на высоких разрешениях нужны новые подходы к работе с токенами (контекст, пуллинг и т.д.).

📎 Вывод:
Early-fusion — не просто рабочий вариант, а оптимальный выбор для мультимодальных моделей при ограниченных ресурсах. Отказ от “склеек” делает обучение проще, быстрее и дешевле.

Читать

#ai #multimodal #scalinglaws #moe #llm #mlresearch #arxiv
🔥94👍2
Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
🔥 ReZero — маленькая модель, которая никогда не сдаётся

🧠 ReZero — это LLM на базе Llama 3.2B, обученная не просто находить ответы, а упорно искать лучший.

🔁 Вместо того чтобы оптимизировать на скорость или recall, ReZero обучается пробовать снова и снова, пока не найдёт правильный ответ.

Модель намеренно поощряется за настойчивость — если она делает retry и улучшает результат, это считается успехом.

Использует синтетические поисковые движки, которые заставляют модель перезапрашивать и улучшать свои ответы.

Обучается с помощью усиленного обучения (RL) — формируя привычку "не сдаваться".


🔜Github
🔜 Модель

@ai_machinelearning_big_data


#LLM #Search #RL #AI #Meta #ReZero #NeverGiveUp #Llama3
Please open Telegram to view this post
VIEW IN TELEGRAM
17👍4🔥4
Forwarded from Machinelearning
📌Beyond-NanoGPT: лаконичные и аннотированные реализации ключевых идей глубокого обучения.

Если вы хотите не просто запускать готовые модели, а понять, как они работают «под капотом», репозиторий Beyond-NanoGPT — то, что нужно. Этот проект аспиранта по CS Стэнфордского университета, который создан как мост между учебными примерами вроде nanoGPT и сложными наработками, предлагает десятки реализаций современных методов глубокого обучения.

Все написано с нуля на PyTorch, с детальными комментариями — идеально для тех, кто устал от абстрактных статей и беспощадного продакшн-кода. Каждая строчка кода написана так, что становится понятно, как его использовать на практике.

Застряли на уровне чтения бесконечных туториалов и хотите двигаться дальше? Этот репозиторий — отличный шаг. Он не сделает вас экспертом за неделю, но даст инструменты, чтобы разобраться в современных статьях и начать свои эксперименты. И да, здесь нет красивого веб-интерфейса или готовых SaaS-решений — только код, комментарии и ваше любопытство. Как и должно быть в ресерче.

Начать очень просто: клонируете репозиторий, ставите зависимости и можно погружаться в код. Архитектуры? Есть Vision Transformer для классификации изображений, Diffusion Transformer для генерации, ResNet и даже MLP-Mixer. Каждый скрипт — отдельный эксперимент.

Например, чтобы обучить DiT на датасете CIFAR-10, достаточно запустить train_dit.py. Все рассчитано на один GPU, так что даже без доступа к злым кластерам можно практиковаться. А если хочется разобраться в механизмах внимания, отдельные ноутбуки покажут, как работают Grouped-Query, линейное, разреженное или перекрестное внимание — с визуализациями и пояснениями.

Проект не только про архитектуры, есть и прикладные техники. Хотите ускорить инференс языковой модели? Посмотрите реализацию KV-кэширования или спекулятивного декодирования — методы, которые сейчас активно используют в LLM-инфраструктуре.

Интересует RL? В разделе с обучением с подкреплением есть классика - DQN и PPO для Cartpole, а в планах — нейросеть для шахмат с MCTS. При этом код не просто работает, но и объясняет нюансы: почему в REINFORCE важна базовая линия, как избежать градиентного взрыва в трансформерах или чем RoPE-эмбединги лучше стандартных.

Часть разделов (Flash Attention, RLHF) пока в разработке. Но планы грандиозные: автор обещает все - от квантования весов до распределенного RL.


📌Лицензирование: MIT License.


🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #Github #BeyondNanoGPT
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
14👍5🔥5
Forwarded from Machinelearning
🌟 Atropos: тренажерный зал для RL языковых моделей.

Atropos от NousResearch - это гибкий фреймворк для асинхронного управления RL-средами. Его архитектура построена так, чтобы максимизировать эффективность даже в распределенных системах, будь то локальный кластер или облако.

Atropos поддерживает децентрализацию. Он позволяет запускать несколько экземпляров сред (от статических датасетов, интерактивных игр, RLAIF и RLHF до обучения сложным многоэтапным взаимодействиям), которые асинхронно передают данные в центральный узел.

Это избавляет от простоя ресурсов, когда обновления политики модели тормозят из-за ожидания результатов всех окружений. Под капотом — интеграция с любыми API (OpenAI, vLLM, SGLang), позволяя свободу выбора LLM-провайдера без переписывания кода.

Практическая польза протестирована в экспериментах:

🟢В задачах параллельного вызова функций точность тестовой модели DeepHermes Tool Calling Specialist выросла в 4,6 раза — с 10% до 46%.

🟢В прогнозировании финансовых показателей на модели DeepHermes Financial Fundamentals Prediction Specialist, RL через Atropos удвоил точность (с 20% до 50%).

Такие результаты достигнуты благодаря многозадачности: фреймворк одновременно управляет разными типами сред, объединяя их в единый тренировочный поток. Вы можете обучать модель на статических данных утром и переключаться на интерактивные игры вечером, не меняя инфраструктуру.

Для разработчиков Atropos предлагает готовые инструменты: от датасетов для тонкой настройки (SFT, DPO) до дебаггеров и визуализации.

Atropos не привязывает вас к конкретному алгоритму RL или инфраструктуре. Запустите 10 экземпляров на ноутбуке или 10 000 через Slurm — фреймворк равномерно распределит нагрузку. Это особенно ценно для исследований: можно быстро экспериментировать с разными подходами, не тратя недели на настройку пайплайнов.

В репозитории есть все, что нужно: коллекция готовых к использованию сред RL, библиотека с базовыми классами и утилитами и примеры конфигураций обучения.

Если хотите понять, как ускорить свои эксперименты с LLM - загляните в документацию проекта, возможно, это именно тот инструмент, который избавит вас от боли асинхронной координации.


📌Лицензирование: MIT License.


🟡Статья
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #RL #Framework #NousResearch #Atropos
Please open Telegram to view this post
VIEW IN TELEGRAM
9👍4🔥2
Forwarded from Machinelearning
📌Tokasaurus: проект для ускорения работы с языковыми моделями.

Tokasaurus — это движок инференса для языковых моделей в режиме высоконагруженных задач. Он максимизирует пропускную способность при работе с LLM, предлагает поддержку API OpenAI, эффективно управляет памятью и оптимизирует вычисления в сценариях, где важно одновременно обрабатывать множество запросов без задержек.

Архитектура Tokasaurus разделена на 3 компонента: веб-сервер, менеджер и модельные воркеры.

🟢Веб-сервер отвечает за взаимодействие с клиентами, принимая запросы и отправляя ответы.

🟢Менеджер, запущенный в отдельном процессе, управляет планированием задач, KV-кешем и группировкой последовательностей с общими префиксами.

🟢Модельные воркеры выполняют прямые запросы к подключенным LLM. Компоненты обмениваются данными асинхронно через очереди, и это позволяет держать GPU загруженным без простоев.

Проект учитывает растущую потребность в масштабировании и предлагает 3 типа параллелизма: дата-параллелизм (dp_size), пайплайн (pp_size) и тензорный (tp_size) с поддержкой AsyncTP.

Async Tensor Parallelism в PyTorch — это техника ускорения распределенных вычислений для LLM, где операции связи (all-gather/reduce-scatter) разбиваются на асинхронные части и перекрываются с матричными умножениями (matmul) с помощью чередующихся CUDA-потоков: пока один поток вычисляет фрагмент matmul, другой параллельно передаtт данные для следующего фрагмента через P2P-копирование (NVLink + copy engines), минимизируя простои GPU.


При использовании нескольких GPU, например, dp_size=2 и pp_size=4, система задействует 8 GPU, создавая 2 дублирующиеся группы по 4 GPU каждая. При этом параметры управления памятью (kv_cache_size_num_tokens, max_seqs_per_forward) применяются к каждой дата-параллельной группе отдельно. Это позволяет тонко управлять ресурсами, исходя из контекста конкретных нагрузок.

Tokasaurus поддерживает модели семейств Llama3 и Qwen2, использует технологию Hydragen для ускорения внимания над общими префиксами последовательностей.

⚠️ Проект пока молодой, поэтому некоторые функции могут быть нестабильными. Разработчики активно работают над улучшениями.


📌 Лицензирование: Apache 2.0 License.


🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM # #Tokasaurus #Github
Please open Telegram to view this post
VIEW IN TELEGRAM
4👍1🔥1
Forwarded from Machinelearning
🌟 SEAL: Еще одна попытка создать пайплайн самообучающихся LLM.

SEAL - это методика от MiT, позволяющая LLM самостоятельно генерировать обучающие данные и настраивать параметры обучения, чтобы адаптироваться к новым задачам. Вместо традиционного файнтюна на внешних данных модель учится рефлексировать: анализировать контекст, создавать из него синтетические данные и применять их для корректировки собственных весов через механизм усиленного обучения.

SEAL, по сути, это два разделенных цикла:

🟢Внешний цикл использует RL, чтобы научить модель генерировать «самоизменения» (инструкции на естественном языке, описывающие, какие данные использовать и как настраивать параметры).

🟢Внутренний цикл реализует эти изменения: модель дообучается на сгенерированных данных, а затем тестирует результат на конкретной задаче. За коррекцию отвечает RL-алгоритм ReSTEM, который оценивает эффективность изменений и обновляет стратегию генерации инструкций. Для экономии ресурсов используются легковесные адаптеры LoRA, которые модифицируют только часть параметров модели.

Этот процесс повторяется, постепенно формируя у модели навык преобразования исходных данных в полезные обучающие сигналы.

SEAL протестили на 2 задачах: интеграции новых знаний и few-shot обучении. В первом случае модель генерирует логические следствия из текста, дообучается на них и улучшает точность ответов на вопросы без доступа к исходному тексту.

Во втором случае SEAL выбирает оптимальные аугментации данных и гиперпараметры для обучения на примерах задач ARC-AGI.

В обоих сценариях SEAL превзошел подходы с фиксированными шаблонами (ICL, TTT+Self Edit без RL и) и даже синтетическими данными от GPT-4.1.

Метод скорее академический и по большей части экспериментальный, у него есть ограничения:

🟠При последовательном применении изменений модель склонна к «катастрофическому забыванию» — потере знаний, усвоенных ранее;

🟠Сопутствующие вычислительные затраты, так как каждая итерация требует дообучения и тестирования модели.


▶️В репозитории проекта разработчики выложили код, данные и инструкции для двух направлений:

🟢Включение новых фактических знаний;

🟢Адаптация к новым задачам на основе примеров.


📌Лицензирование: MIT License.


🟡Страница проекта
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #SEAL #RL #MiT
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
6👍3🔥3😁1
🚀 Вышли модели Qwen3 в формате MLX!

Теперь можно запускать Qwen3 локально — быстро, эффективно и с разной точностью:
- 4-bit
- 6-bit
- 8-bit
- BF16

🔧 Модели специально оптимизированы под MLX framework — минимальный объём, максимальная производительность, полная совместимость с Apple Silicon.

🧪 Идеально подходит для локального inference и интеграции в MLX‑проекты.

📦 Попробовать:
• Hugging Face: huggingface.co/collections/Qwen/qwen3-67dd247413f0e2e4f653967f
ModelScope: modelscope.cn/collections/Qwen3-9743180bdc6b48

@machinelearning_interview

#Qwen3 #MLX #LLM #AppleSilicon #AI
10👍5🔥4
Forwarded from Machinelearning
🌟MiniMax-M1: открытя reasoning‑LLM с контекстом 1M

MiniMax-M1 — первая в мире open-weight гибридная reasoning‑LLM c 1M контекстом (8× DeepSeek R1) и гибридной архитектурой MoE + lightning attention.
• 456 млрд параметров (45,9 млрд активируются на токен), сверхэффективная генерация — 25% FLOPs DeepSeek R1 на 100K токенов
• Обучение через RL с новым алгоритмом CISPO, решающим реальные задачи от математики до кодинга
• На обучение было потрачено $534K, две версии — 40K/80K “thinking budget”
• Обходит DeepSeek R1 и Qwen3-235B на бенчмарках по математике и кодингу,
• Топ результат на задачах для software engineering и reasoning



Бенчмарки:
AIME 2024: 86.0 (M1-80K) vs 85.7 (Qwen3) vs 79.8 (DeepSeek R1)

SWE-bench Verified: 56.0 vs 34.4 (Qwen3)

OpenAI-MRCR (128k): 73.4 vs 27.7 (Qwen3)

TAU-bench (airline): 62.0 vs 34.7 (Qwen3)

LongBench-v2: 61.5 vs 50.1 (Qwen3)


➡️ Попробовать можно здесь

Hugging Face: https://huggingface.co/collections/MiniMaxAI/minimax-m1-68502ad9634ec0eeac8cf094
GitHub: https://github.com/MiniMax-AI/MiniMax-M1
Tech Report: https://github.com/MiniMax-AI/MiniMax-M1/blob/main/MiniMax_M1_tech_report.pdf


@ai_machinelearning_big_data

#llm #reasoningmodels #minimaxm1
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
8🔥4👍2
Forwarded from Machinelearning
📌Реверс-инженерия GPT-2 методом трассировки цепей Cross-Layer Transcoders.

Goodfire AI, вдохновившись примером Anthropic в интерпретации внутренних процессов Claude, воспроизвели методы трассировки цепей межслойных транскодеров (Cross-Layer Transcoders, CLT) на GPT-2 Small, чтобы проверить их способность раскрывать известные механизмы трансформеров.

Выбор на GPT-2 Small пал не случайно, эта модель небольшая и уже была ранее подвергнута ручному реверс-инжинирингу.

Cross-Layer Transcoders выжимают из модели разреженные признаки, которые объясняют работу MLP-слоев. Визуализируют это через графы атрибуции — это карты влияния признака на выход модели.


Натренировали на 100M токенов из FineWeb, получили ~590K признаков. Точность CLT-реплики модели составила 59%, что близко к оригинальным статьям. Тестировали на задаче сравнения чисел («больше, чем»), идеальном полигоне, где уже известны ключевые механизмы.

Задача "Больше, чем" (ориг. "greater-than") взята из статьи Michael Hanna, она заставляет предсказывать большие числа для второго года в диапазоне дат.


▶️ Главный эксперимент:

Промпт «The war lasted from the year 1711 to 17». CLT построил граф, где признаки с токена «11» (последняя цифра года) активнее всего влияли на предсказание.

Дальше, выделили топ-160 признаков, для каждого построили логит-атрибуции — теплокарты, показывающие, как признак влияет на выходные годы (ZZ) при разных входных (YY).

▶️ Что нашли:

🟢Признаки «больше, чем»: Feature 425104 (слой 8) активируется на больших числах в хронологии (даты, войны). Но его теплокарта продвигает выходы >60, независимо от входа, а вот Feature 461858 работает только для YY=6–14 и продвигает ZZ=10–30.

Похоже, CLT подсветил кучу узкоспециализированных «сравнивателей», а не универсальные нейроны, как в ручных исследованиях.

🟢Сюрпризы: Feature 399423 — вообще не про числа. Он кодирует четность и контраст: активируется на «and» в «pros and cons», а в задаче продвигает четные ZZ при нечетных YY. Абстракция уровня «противоположность» — такого в прошлых работах не видели.

🟢Странности: Feature 402486 вообще саботирует задачу: продвигает малые числа. Или Feature 349410 — работает только для YY=11, хотя ее max-активации показывают числа до 30.

▶️ Выводы:

CLT автоматически находит интерпретируемые признаки, даже такие неочевидные, как абстрактная четность. Но их «разреженный» мир выглядит иначе, чем ручная трассировка цепей: тут больше узких признаков-«спецов» (Feature 461858 для диапазона 10–30) и меньше универсальных механизмов.

Возможно, дело в методе: CLT смотрит изолированные вклады фич, а в полной модели они взаимодействуют.

В общем, эксперименты с CLT показал, что под капотом языковых моделей не только четкие «сравниватели чисел», но и куча скрытых паттернов вроде детекторов контраста или любителей чисел, кратных 5. И да, полуавтономный анализ иногда видит то, что люди упускают.

🔜 Читать полную статью


@ai_machinelearning_big_data

#AI #ML #LLM #Research #CLT
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
8🔥4🥰1🤔1
Forwarded from Machinelearning
📌SemDiD: Семантическое разнообразие ответов для LLM.

Исследователи из из Гонконгского университета и инженеры Alibaba научили LLM генерировать семантически разные ответы, заставляя их «думать» в ортогональных направлениях.

Наверняка каждый, кто работает с LLM, сталкивался с их любовью к самоповторам. Запрашиваешь несколько вариантов решения, а получаешь одну и ту же мысль, просто перефразированную.

Стандартные подходы к декодированию, temperature sampling или diverse beam search, создают лишь лексическое разнообразие, но пасуют, когда требуется семантическое. Это серьезная проблема для Best-of-N или RLHF. Ведь без по-настоящему разных идей и подходов к решению задачи эти методы теряют свою силу: выбирать лучший вариант не из чего, а обучать модель на однотипных примерах неэффективно.

Решение предложили в методе SemDiD (Semantic-guided Diverse Decoding). Его суть, если кратко, перестать играть с токенами на поверхности и начать управлять генерацией напрямую в пространстве эмбеддингов.

🟡Метод работает так.

Сначала, на старте, он принудительно направляет разные группы beams по ортогональным векторам в семантическом пространстве. Грубо говоря, это как дать команду разным поисковым группам двигаться строго на север, юг и запад, чтобы они гарантированно разошлись.

По мере генерации, когда жесткие директивы могут стать неоптимальными, включается второй механизм - inter-group repulsion. Он просто следит, чтобы смысловые траектории ответов не сближались, сохраняя их уникальность до самого конца.

Но как, гоняясь за разнообразием, не получить на выходе бессвязный бред?

SemDiD подходит к контролю качества уникально. Он не пытается слепо максимизировать вероятность последовательности, а использует ее лишь как нижнюю границу, чтобы отсечь совсем уж плохие варианты.

Кроме того, алгоритм корректирует системные искажения, когда вероятность токенов искусственно завышается в зависимости от их позиции в тексте.

Для баланса между качеством и разнообразием используется адаптивный механизм на основе гармонического среднего, который в каждый момент времени уделяет больше внимания той метрике, которая проседает.

🟡В тестах метод показал неплохие результаты.

На бенчмарках для Best-of-N, от MMLU-Pro+ до GSM8K, SemDiD увеличивает покрытие (шанс найти верный ответ) на 1.4%-5.2% по сравнению с аналогами.

🟡Но главный прорыв - в RLHF.

Генерируя для GRPO или RLOO семантически богатые наборы ответов, SemDiD предоставляет им более качественный материал для обучения. Это ускоряет сходимость на 15% и повышает финальную точность моделей.


🟡Arxiv


@ai_machinelearning_big_data

#AI #ML #LLM #SemDiD
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
10👍7🔥4
🍏 Apple всерьёз задумалась о покупке Mistral — Bloomberg / Марк Гурман

По информации Bloomberg, Apple серьёзно рассматривает покупку французского стартапа Mistral AI, чтобы наконец войти в ИИ-гонку.

Это очень поздний шаг — но он показывает, насколько сильно Apple отстала от OpenAI, Google и даже xAI.

Пока другие выкатывают публичные LLM, мультимодальные ассистенты и интеграции в поиске, Apple остаётся в роли наблюдателя.

📌 Почему это важно:
- Mistral — один из главных open-source игроков на рынке ИИ (выпускают мощные LLM и Mixture of Experts-модели)
- У Apple пока нет ни собственной модели, ни сильной стратегии в области ИИ
- Приобретение Mistral может стать экстренной попыткой догнать конкурентов

Если сделка состоится — это будет крупнейший AI-манёвр Apple за всё время.

#Apple #Mistral #AI #LLM #ГонкаИИ

@machinelearning_interview
6👍3🔥2
🧠 Андрей Карпаты выпустил интересный пост о масштабировании RL.

Все говорят о масштабировании RL — и не зря. Но ощущение, что это только часть большой картины.

Вчера обсуждали с другом: Reinforcement Learning даёт более масштабируемую обратную связь, чем SFT, и это действительно мощный рычаг. Вместо явных меток — просто: "получилось хорошо → усилим действия", "плохо → ослабим". Но...

🔸 Проблема №1 — асимптотика
Как только задача выходит за пределы секунд и становится минутами/часами взаимодействий, RL сводится к тому, что ты делаешь тонну действий, чтобы в конце получить одну скалярную метку — и по ней обновить весь градиент? Это кажется неэффективным.

🔸 Проблема №2 — не по-человечески
Мы (люди) улучшаемся не только по результату "успех/провал". Мы рефлексируем:
- Что сработало?
- Что нет?
- Что стоит попробовать в следующий раз?

Этот "урок" мы потом либо держим в голове, либо записываем. Он становится частью интуиции или инструкции. В языке это называют *second nature*.
И таких механизмов в обучении ИИ пока нет.

🔍 Пример алгоритма:
1. Несколько rollout'ов
2. Все примеры + награды → в один контекст
3. Промпт на рефлексию: *"Что сработало? Что улучшить?"*
4. Сгенерированная строка → системный промпт или база "уроков"

Это и есть lesson-инъекция. Например, в Claude было явно прописано:
> "Если тебя просят посчитать буквы — раздели по запятым и считай по одному"

Это патч-урок, не выученный, а вручную внедрённый. Вопрос: как заставить агента учить такие уроки сам? И — как потом их дистиллировать, чтобы не раздувать контекст?

🧭 TLDR:
- RL будет давать приросты — оно более “горькое”, но и более leverage‑friendly, чем SFT
- Но это не вся история
- Реальные "S-кривые" могут скрываться в новых парадигмах обучения, которые специфичны для LLM и не похожи на Atari или роботов
- Возможно, "рефлексия → урок → встроенная привычка" — это один из недостающих слоёв в современных системах

#AI #RL #LLM #agenticlearning #meta #reinforcementlearning

@machinelearning_interview
👍1711🔥4🍓3🤪1
🎓 Новые лекции от UCLA: *Reinforcement Learning of Large Language Models* (весна 2025)

Свежий курс, полностью посвящённый обучению LLM с помощью RL. Отличный ресурс для тех, кто хочет разобраться не только в RLHF, но и в новых направлениях, которые появляются на стыке обучения с подкреплением и больших языковых моделей.

📚 Что в курсе:
– Базовые принципы RL применительно к LLM
– RLHF (reinforcement learning from human feedback)
– RL с верифицируемыми наградами (RLVR)
– RL на этапе inference: оптимизация в момент выполнения
– Архитектуры, policy shaping, reward modeling и др.

Это не просто обзор — это системная попытка осмыслить будущее RL для LLM, где важно не только fine-tuning, но и работа с обратной связью в режиме реального времени, доверие к награде и оптимизация вычислений.

🧠 Полезно всем, кто:
– интересуется агентами и автономными системами
– работает над LLM‑продуктами
– хочет выйти за пределы SFT и попробовать более «горькие» методы обучения

#LLM #RLHF #RLVR #AIeducation #ReinforcementLearning #UCLA

🔜 Youtube: https://youtube.com/playlist?list=PLir0BWtR5vRp5dqaouyMU-oTSzaU5LK9r

🔜 Курс: https://ernestryu.com/courses/RL-LLM.html
Please open Telegram to view this post
VIEW IN TELEGRAM
👍33🔥1513💯7