⚠️ Claude теперь может "настучать" — и это не шутка
В системной документации моделей от Anthropic обнаружили тревожную деталь: функцию автоматического оповещения властей, СМИ или регулирующих органов, если пользователь запрашивает что-то потенциально незаконное.
Например, если вы попросите Claude подделать результаты клинических испытаний, модель теоретически может отправить уведомление в FDA (Управление по контролю за продуктами и лекарствами США) — автоматически и без вашего ведома.
🧩 Разработчики утверждают, что эта функция не была включена в релиз, а лишь рассматривалась как концепт.
Но сам факт её проработки вызывает серьёзные вопросы:
• Где граница между безопасностью и слежкой?
• Кто решает, что считается "нарушением"?
• Что будет, если подобный механизм попадёт в руки корпораций или авторитарных режимов?
🤖 Мы стремительно движемся к эпохе, где ИИ может быть не просто помощником, а наблюдателем, прокурором — и информатором.
@machinelearning_interview
#AI #Claude #Anthropic #этика #наблюдение #ИИ
В системной документации моделей от Anthropic обнаружили тревожную деталь: функцию автоматического оповещения властей, СМИ или регулирующих органов, если пользователь запрашивает что-то потенциально незаконное.
Например, если вы попросите Claude подделать результаты клинических испытаний, модель теоретически может отправить уведомление в FDA (Управление по контролю за продуктами и лекарствами США) — автоматически и без вашего ведома.
🧩 Разработчики утверждают, что эта функция не была включена в релиз, а лишь рассматривалась как концепт.
Но сам факт её проработки вызывает серьёзные вопросы:
• Где граница между безопасностью и слежкой?
• Кто решает, что считается "нарушением"?
• Что будет, если подобный механизм попадёт в руки корпораций или авторитарных режимов?
🤖 Мы стремительно движемся к эпохе, где ИИ может быть не просто помощником, а наблюдателем, прокурором — и информатором.
@machinelearning_interview
#AI #Claude #Anthropic #этика #наблюдение #ИИ
👍26🔥8❤5👎3👏2
🧠 One RL to See Them All
MiniMax-AI представили Orsta-7B и Orsta-32B — мощные мультимодальные модели, обученные по новой методике V-Triune:
🔧 V-Triune объединяет:
• форматирование данных на уровне задач,
• расчет награды через кастомные верификаторы,
• мониторинг метрик по источникам.
💥 Результаты?
📈 Orsta-32B даёт **+14.1% прирост** на MEGA-Bench Core по сравнению с QwenVL-2.5!
От OCR и распознавания объектов до визуального рассуждения и математических задач — одна RL-схема покрывает всё.
📦 Модели уже доступны:
- huggingface.co/collections/One-RL-to-See-Them-All/one-rl-to-see-them-all-6833d27abce23898b2f9815a
- github.com/MiniMax-AI/One-RL-to-See-Them-All
Открытая, мощная, готовая к запуску.
#AI #Orsta #MiniMax #VisionLanguage #RLHF #VLM #Multimodal #OpenSource #HuggingFace
MiniMax-AI представили Orsta-7B и Orsta-32B — мощные мультимодальные модели, обученные по новой методике V-Triune:
🔧 V-Triune объединяет:
• форматирование данных на уровне задач,
• расчет награды через кастомные верификаторы,
• мониторинг метрик по источникам.
💥 Результаты?
📈 Orsta-32B даёт **+14.1% прирост** на MEGA-Bench Core по сравнению с QwenVL-2.5!
От OCR и распознавания объектов до визуального рассуждения и математических задач — одна RL-схема покрывает всё.
📦 Модели уже доступны:
- huggingface.co/collections/One-RL-to-See-Them-All/one-rl-to-see-them-all-6833d27abce23898b2f9815a
- github.com/MiniMax-AI/One-RL-to-See-Them-All
Открытая, мощная, готовая к запуску.
#AI #Orsta #MiniMax #VisionLanguage #RLHF #VLM #Multimodal #OpenSource #HuggingFace
👍9❤3🔥3
⚙️ Полный гид по GPU-экосистеме — без воды и маркетинга
Если ты путаешься в CUDA, OpenCL, SYCL и HIP — этот гайд от ENCCS расставит всё по полочкам. Это не просто обзор, а чёткое объяснение, как устроен мир GPU-программирования сегодня.
🧠 Что ты узнаешь:
🔹 Как и почему GPU радикально отличается от CPU
🔹 Из чего состоит стек GPU-технологий:
— CUDA и его аналоги (HIP, SYCL, OpenCL)
— Директивы: OpenMP, OpenACC
🔹 Какие языки и стандарты поддерживают какую архитектуру
🔹 NVIDIA, AMD, Intel — кто что умеет и чем отличается
🔹 Модели памяти, исполнения, и что влияет на производительность
📌 Гайд подходит для:
• Разработчиков HPC и научных расчётов
• Инженеров ML/AI, желающих копнуть глубже
• Всех, кто хочет разобраться в низкоуровневом GPU-стеке без маркетингового тумана
📖 Читать:
https://enccs.github.io/gpu-programming/2-gpu-ecosystem/
🔥 Один из самых понятных и системных разборов GPU-мира на сегодня.
#GPU #CUDA #OpenCL #HIP #SYCL #HPC #AI #HighPerformanceComputing
Если ты путаешься в CUDA, OpenCL, SYCL и HIP — этот гайд от ENCCS расставит всё по полочкам. Это не просто обзор, а чёткое объяснение, как устроен мир GPU-программирования сегодня.
🧠 Что ты узнаешь:
🔹 Как и почему GPU радикально отличается от CPU
🔹 Из чего состоит стек GPU-технологий:
— CUDA и его аналоги (HIP, SYCL, OpenCL)
— Директивы: OpenMP, OpenACC
🔹 Какие языки и стандарты поддерживают какую архитектуру
🔹 NVIDIA, AMD, Intel — кто что умеет и чем отличается
🔹 Модели памяти, исполнения, и что влияет на производительность
📌 Гайд подходит для:
• Разработчиков HPC и научных расчётов
• Инженеров ML/AI, желающих копнуть глубже
• Всех, кто хочет разобраться в низкоуровневом GPU-стеке без маркетингового тумана
📖 Читать:
https://enccs.github.io/gpu-programming/2-gpu-ecosystem/
🔥 Один из самых понятных и системных разборов GPU-мира на сегодня.
#GPU #CUDA #OpenCL #HIP #SYCL #HPC #AI #HighPerformanceComputing
👍14❤7🔥3
Forwarded from Machinelearning
Те, кто работает с синтезом речи, знают, что авторегрессионные трансформерные модели, хоть и хороши для генерации речи из текста с нуля, но создают кучу проблем, когда нужно редактирование. Стандартные методы, в виде полной перегенерации предложения, обходятся дорого по ресурсам и часто приводят к изменению интонации или ритма.
Замена отдельного слова обычно оставляет неприятные «склейки» на границах, а перегенерация с середины фразы может испортить уже существующую часть. Все это бьет по естественности и связности звучания.
PlayAI выпустила PlayDiffusion 1.0 – диффузионную модель для редактирования речи, которая умеет изменять нужные участки аудио, сохраняя при этом общую гладкость и характеристики голоса. Причем модель пригодна как для реальной речи, так и для аудио, сгенерированного другими TTS-моделями.
В PlayDiffusion аудиопоток кодируется в дискретное пространство, превращаясь в более компактную последовательность токенов. Затем, тот сегмент, который требует модификации маскируется.
После этого задействуется сама диффузионная модель. Она, опираясь на обновленный текстовый контент, «восстанавливает» замаскированную область, убирая шум. На выходе последовательность токенов снова преобразуется в полноценный звук с помощью декодера BigVGAN.
Чтобы добиться таких результатов, PlayAI взяли за основу текстовую трансформерную архитектуру и внесли несколько ключевых модификаций:
Интересно, что если замаскировать вообще всю аудиодорожку, PlayDiffusion может работать как TTS. В отличие от авторегрессионных моделей, которые генерируют каждый токен последовательно, опираясь на предыдущие, диффузионные модели генерят все токены одновременно, а затем уточняют их за фиксированное число шагов.
Например, для генерации 20 секунд аудио кодеком на 50 Гц авторегрессионной модели потребуется 1000 шагов. PlayDiffusion же способен выдать все 1000 токенов сразу и уточнить их всего за 20 итераций – это до 50 раз эффективнее по количеству шагов генерации.
@ai_machinelearning_big_data
#AI #ML #TTS #Inpainting #PlayDiffusion #PlayAI
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤7🔥5🥰1
Forwarded from Machinelearning
Google выложил в открытый доступ на Github фуллстек-проект, который превращает пользовательские запросы в глубокие исследования с помощью Gemini. Его главная задача - находить информацию в интернете, анализировать ее и выдавать ответы с ссылками на источники, используя комбинацию React-интерфейса и бэкенда на базе LangGraph.
Проект включает в себя все необходимое: и фронтенд, и бэкенд.
Внутри бэкенда есть модуль, который отвечает за запуск цикла: сначала Gemini создает начальные запросы, затем система ищет информацию через API Google Search, оценивает, хватает ли данных, и при необходимости повторяет процесс.
Важная часть пайплайна — рефлексия. После каждого поиска агент проверяет, закрыты ли все «пробелы» в знаниях. Если информации недостаточно, он генерирует новые вопросы и повторяет цикл, пока не соберёт достаточно данных для ответа.
Проект адаптирован к продакшену, в нем используются Redis (для стриминга результатов в реальном времени) и PostgreSQL (для хранения истории диалогов и управления задачами). Это позволяет системе не терять прогресс даже при перезагрузках.
⚠️ Для практического использования потребуются API-ключи к Google Gemini и LangSmith.
@ai_machinelearning_big_data
#AI #ML #DeepSearch #Google #Gemini #LangGraph
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤13👍4🥰2🤣1
This media is not supported in your browser
VIEW IN TELEGRAM
🚀 Теперь можно запускать модели Hugging Face прямо в Google Colab — бесплатно!
Больше не нужно настраивать окружение вручную. Просто заходишь на страницу модели — и нажимаешь "Open in Colab". Всё готово для запуска за секунды.
✅ Отлично подходит для:
- Быстрого теста модели
- Прототипирования и экспериментов
- Обучения и демонстраций
💡 Бонус для разработчиков:
Добавь файл
Пользователи смогут запускать твой пример сразу, без копирования кода!
🔥 Работает с Google Colab — бесплатно, быстро, удобно.
#HuggingFace #Colab #ML #AI #OpenSource #DeepLearning
✔️ Подробнее
@machinelearning_interview
Больше не нужно настраивать окружение вручную. Просто заходишь на страницу модели — и нажимаешь "Open in Colab". Всё готово для запуска за секунды.
✅ Отлично подходит для:
- Быстрого теста модели
- Прототипирования и экспериментов
- Обучения и демонстраций
💡 Бонус для разработчиков:
Добавь файл
notebook.ipynb
в свой репозиторий модели — и Hugging Face автоматически подхватит его. Пользователи смогут запускать твой пример сразу, без копирования кода!
🔥 Работает с Google Colab — бесплатно, быстро, удобно.
#HuggingFace #Colab #ML #AI #OpenSource #DeepLearning
@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
❤18🔥11👍4❤🔥2
Forwarded from Machinelearning
Tokasaurus — это движок инференса для языковых моделей в режиме высоконагруженных задач. Он максимизирует пропускную способность при работе с LLM, предлагает поддержку API OpenAI, эффективно управляет памятью и оптимизирует вычисления в сценариях, где важно одновременно обрабатывать множество запросов без задержек.
Архитектура Tokasaurus разделена на 3 компонента: веб-сервер, менеджер и модельные воркеры.
Проект учитывает растущую потребность в масштабировании и предлагает 3 типа параллелизма: дата-параллелизм (
dp_size
), пайплайн (pp_size
) и тензорный (tp_size
) с поддержкой AsyncTP.Async Tensor Parallelism в PyTorch — это техника ускорения распределенных вычислений для LLM, где операции связи (all-gather/reduce-scatter) разбиваются на асинхронные части и перекрываются с матричными умножениями (matmul) с помощью чередующихся CUDA-потоков: пока один поток вычисляет фрагмент matmul, другой параллельно передаtт данные для следующего фрагмента через P2P-копирование (NVLink + copy engines), минимизируя простои GPU.
При использовании нескольких GPU, например,
dp_size=2
и pp_size=4
, система задействует 8 GPU, создавая 2 дублирующиеся группы по 4 GPU каждая. При этом параметры управления памятью (kv_cache_size_num_tokens
, max_seqs_per_forward
) применяются к каждой дата-параллельной группе отдельно. Это позволяет тонко управлять ресурсами, исходя из контекста конкретных нагрузок.Tokasaurus поддерживает модели семейств Llama3 и Qwen2, использует технологию Hydragen для ускорения внимания над общими префиксами последовательностей.
⚠️ Проект пока молодой, поэтому некоторые функции могут быть нестабильными. Разработчики активно работают над улучшениями.
@ai_machinelearning_big_data
#AI #ML #LLM # #Tokasaurus #Github
Please open Telegram to view this post
VIEW IN TELEGRAM
❤4👍1🔥1
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
По аналогии с автосалонами, робототехнический 4S будет предлагать полный цикл: продажи (Sales), сервис (Service), запчасти (Spare parts) и консультации/анализ (Surveys). Планируется зона с демонстрацией роботов в реалистичных сценариях – можно будет всё пощупать руками и увидеть их возможности в деле. Плюс создадут быструю сеть поставки комплектующих по стране и соберут профильную команду для сборки, ремонта и обслуживания машин.
Первыми партнерами станут несколько лидеров сферы: UBTECH и Galaxea. Откроется центр в августе на базе промпарка в районе Ичжуан на юге столицы.
english.news.cn
The Browser Company открыл доступ к бета-версии браузера Dia (по инвайтам). Dia позиционируется как решение, где ИИ глубоко интегрирован в самую суть взаимодействия, он встроен прямо в рабочий процесс пользователя, избавляя от необходимости постоянно ходить на сайты ChatGPT или Claude.
Dia построен на Chromium, так что интерфейс многим знаком. Главная фича — умная адресная строка: она работает и как поиск, и как чат-бот с ИИ. Помощник умеет искать в сети, суммировать загруженные файлы, автоматически переключаться между режимами. Можно даже спросить его о содержимом всех открытых вкладок или попросить составить черновик на их основе.
Настройки производятся через диалог с ботом: можно задать тон, стиль письма, параметры для кода. Опция History (по желанию) позволяет браузеру использовать недельную историю просмотров как контекст для ответов. А функция Skills помогает создавать мини-скрипты — ярлыки для сложных настроек или действий.
techcrunch.com
Mistral AI анонсировала Mistral Compute - инфраструктурную платформу для разработки и запуска ИИ. Это полноценный приватный стек: от GPU и систем оркестрации до API и сервисов. На выбор любой формат, от bare-metal до полностью управляемой PaaS.
Mistral Compute нацелен дать государствам, компаниям и научным центрам, ищущих альтернативу решениям из США или Китая, возможность самим строить ИИ-среду под свои нужды и полностью ею владеть.
Платформа использует новейшие архитектуры NVIDIA, с доступом к десяткам тысяч GPU. Она создана командой с огромным опытом в HPC и обучении топовых ИИ-моделей. Ключевые акценты: устойчивость и суверенитет данных, инфраструктура соответствует строгим европейским нормам и работает на декарбонизированной энергии.
mistral.ai
Seedance 1.0 - новая генеративная модель для создания видео, которая, по утверждениям ByteDance, превосходит конкурентов в точности выполнения запросов, качестве движений и резкости изображения. В тестах на Artificial Analysis она лидирует в задачах text-to-video и image-to-video, обходя Google Veo 3, Kuaishou Kling 2.0 и OpenAI Sora. Модель справляется с длинными сценами, сохраняя стабильность персонажей и переходов между ракурсами, но пока не поддерживает добавление звука.
Seedance 1.0 генерирует 5-секундный Full HD-ролик за 41 секунду — это быстрее аналогов, хотя новый Google Veo 3 Fast может нивелировать это преимущество. Инструмент планируют внедрить в платформы Doubao и Jimeng. Целевая аудитория — от профессиональных видеомейкеров до обычных пользователей.
seed.bytedance.com
Midjourney объявила о начале открытого тестирования модели генерации видео по текстовым запросам. Задача тестирования собрать обратную связь для улучшения алгоритма.
Создатели пригласили сообщество принять участие в онлайн-рейтинге сгенерированных роликов, присоединиться можно по ссылке. Пока некоторые образцы выглядят достойно и сохраняют фирменный стиль Midjourney, но в целом результаты пока нестабильны.
Компания подчеркивает: это не финальная версия модели, а лишь первый шаг. Дополнительные сессии тестирования уже запланированы, но дату релиза и цену пока не раскрывают.
midjourney.com
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6🔥4❤3
Forwarded from Machinelearning
SEAL - это методика от MiT, позволяющая LLM самостоятельно генерировать обучающие данные и настраивать параметры обучения, чтобы адаптироваться к новым задачам. Вместо традиционного файнтюна на внешних данных модель учится рефлексировать: анализировать контекст, создавать из него синтетические данные и применять их для корректировки собственных весов через механизм усиленного обучения.
SEAL, по сути, это два разделенных цикла:
Этот процесс повторяется, постепенно формируя у модели навык преобразования исходных данных в полезные обучающие сигналы.
SEAL протестили на 2 задачах: интеграции новых знаний и few-shot обучении. В первом случае модель генерирует логические следствия из текста, дообучается на них и улучшает точность ответов на вопросы без доступа к исходному тексту.
Во втором случае SEAL выбирает оптимальные аугментации данных и гиперпараметры для обучения на примерах задач ARC-AGI.
В обоих сценариях SEAL превзошел подходы с фиксированными шаблонами (ICL, TTT+Self Edit без RL и) и даже синтетическими данными от GPT-4.1.
Метод скорее академический и по большей части экспериментальный, у него есть ограничения:
@ai_machinelearning_big_data
#AI #ML #LLM #SEAL #RL #MiT
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤6👍3🔥3😁1
🚀 Вышли модели Qwen3 в формате MLX!
Теперь можно запускать Qwen3 локально — быстро, эффективно и с разной точностью:
- 4-bit
- 6-bit
- 8-bit
- BF16
🔧 Модели специально оптимизированы под MLX framework — минимальный объём, максимальная производительность, полная совместимость с Apple Silicon.
🧪 Идеально подходит для локального inference и интеграции в MLX‑проекты.
📦 Попробовать:
• Hugging Face: huggingface.co/collections/Qwen/qwen3-67dd247413f0e2e4f653967f
• ModelScope: modelscope.cn/collections/Qwen3-9743180bdc6b48
@machinelearning_interview
#Qwen3 #MLX #LLM #AppleSilicon #AI
Теперь можно запускать Qwen3 локально — быстро, эффективно и с разной точностью:
- 4-bit
- 6-bit
- 8-bit
- BF16
🔧 Модели специально оптимизированы под MLX framework — минимальный объём, максимальная производительность, полная совместимость с Apple Silicon.
🧪 Идеально подходит для локального inference и интеграции в MLX‑проекты.
📦 Попробовать:
• Hugging Face: huggingface.co/collections/Qwen/qwen3-67dd247413f0e2e4f653967f
• ModelScope: modelscope.cn/collections/Qwen3-9743180bdc6b48
@machinelearning_interview
#Qwen3 #MLX #LLM #AppleSilicon #AI
❤10👍5🔥4