Порой у поверхности воды в чашке горячего чая можно наблюдать белесое облачко. Оказывается, оно может превращаться в удивительное образование — кластер из микроскопических капель, формирующих упорядоченную структуру, подобную кристаллической решетке. Это образование родственно пылевым кристаллам, которые космонавты изучают на борту орбитальной станции (см. «Химию и жизнь» № 4, 2006). Оно может служить иллюстрацией важнейшего принципа термодинамики неравновесных процессов: поток энергии, проходящий через систему, не только вызывает в ней разрушение из-за роста энтропии, но и способен сформировать порядок, существующий длительное время. Не исключено, что, научившись управлять поведением капельного кластера, исследователи смогут создавать системы микрореакторов для химических превращений, а также выполнять кибернетические манипуляции с веществом.
#физика #термодинамика #лазер #аэродинамика #самоорганизация #энтропия
https://telegra.ph/Kapelnyj-klaster-iz-Sibiri-09-23
#физика #термодинамика #лазер #аэродинамика #самоорганизация #энтропия
https://telegra.ph/Kapelnyj-klaster-iz-Sibiri-09-23
Telegraph
Капельный кластер из Сибири
Элементы
Диссипативный фазовый пере
Андрей Семенов
Физик Андрей Семенов о квантовом туннелировании, степенях свободы и квантовых фазовых переходах
#квантмех #механика #физика #термодинамика #подкаст #энтропия postnauka.ru/video/80502
#квантмех #механика #физика #термодинамика #подкаст #энтропия postnauka.ru/video/80502
Если взять два электрода, один плоский, другой длинный и тонкий, и разлить по поверхности плоского электрода масло, можно сделать «электрические соты». Электрический заряд накапливается на конце длинного и узкого проводника (иглы), и рано или поздно воздух между ним и маслом пробивает коронный разряд. Электроны с кончика иглы, стремясь перейти на пластину второго электрода, оказываются на поверхности масла. Масло – плохой проводник, электроны проходят сквозь него не сразу. Сначала они путешествуют по поверхности масла, ионизируя его молекулы. На поверхности жидкости образуется узнаваемая ячеистая структура, напоминающая пчелиные соты. Пока электроны не доберутся до нижнего электрода, вся система напоминает, по словам испанского физика Альберто Изкердо, заплутавшую молнию.
#физика #электричество #термодинамика
https://naked-science.ru/article/sci/shkolnik-iz-pakistana-razgadal-zagadku
#физика #электричество #термодинамика
https://naked-science.ru/article/sci/shkolnik-iz-pakistana-razgadal-zagadku
Naked Science
Школьник из Пакистана разгадал загадку «электрических сот»
Семнадцатилетний школьник из Пакистана нашел ответ на старый вопрос электродинамики о механизме формирования «электрических сот» и опубликовал работу в одном из самых известных научных журналов мира.
Супергидрофобные поверхности имеют две главных особенности: во-первых, они очень шероховатые, а во-вторых, сделаны из гидрофобного материала. Благодаря сочетанию этих свойств при контакте с водой на межфазной границе могут «застревать» пузырьки газа, что в частности, приводит к увеличению угла смачивания. В зависимости от формы шероховатостей и материала, из которого эта супергидрофобная поверхность состоит, она может находиться в двух состояниях: в состоянии Касси, в котором углубления на поверхности заполнены жидкостью, или в состоянии Венцеля, когда газовый слой на межфазной границе становится неустойчивым и все углубления заполняются жидкостью. Оба этих состояния можно наблюдать, и если положить водную каплю сверху на поверхность, и если всю поверхность целиком поместить под воду.
#физика #термодинамика
https://telegra.ph/Supergidrofobnye-poverhnosti-nauchili-ehffektivno-kipyatit-vodu-04-29
#физика #термодинамика
https://telegra.ph/Supergidrofobnye-poverhnosti-nauchili-ehffektivno-kipyatit-vodu-04-29
Telegraph
Супергидрофобные поверхности научили эффективно кипятить воду
N+1 Американские физики нашли способ повысить эффективность передачи тепла от супергидрофобной поверхности к кипящей жидкости. Чтобы поверхность при этом не покрывалась сплошным газовым слоем, она должна изначально находиться в нужном состоянии, когда все…
В конце XIX века аномальную скользкость льда при небольших отрицательных температурах предложили объяснять тем, что при повышенном контактном давлении из-за разницы в плотности между жидкой и твердой фазой происходит частичное плавление. Это приводит к появлению между двумя твердыми поверхностям жидкой прослойки, которая при скольжении играет роль смазки. Однако сейчас этот механизм считается не совсем точным, и появление очень тонкого водного слоя связывают не с контактным давлением, а нагревом при трении. Тем не менее, роль плавления в механизме снижения трения до сих пор вызывает вопросы, и на молекулярном уровне этот процесс исследован не до конца.
Чтобы прояснить молекулярный механизм снижения трения на поверхности льда, физики из Нидерландов, Германии и Франции под руководством Даниэля Бонна (Daniel Bonn) из Амстердамского университета провели экспериментальное исследование коэффициента трения при скольжении стального шарика по ледяной поверхности и объяснили полученные результаты с помощью спектроскопических измерений и компьютерного моделирования методом молекулярной динамики. Как эксперимент, так и моделирование изучали довольно широкий диапазон температур — от 0 до -100 градусов Цельсия.
#физика #термодинамика #вещество
https://nplus1.ru/news/2018/05/10/slippery-ice
Чтобы прояснить молекулярный механизм снижения трения на поверхности льда, физики из Нидерландов, Германии и Франции под руководством Даниэля Бонна (Daniel Bonn) из Амстердамского университета провели экспериментальное исследование коэффициента трения при скольжении стального шарика по ледяной поверхности и объяснили полученные результаты с помощью спектроскопических измерений и компьютерного моделирования методом молекулярной динамики. Как эксперимент, так и моделирование изучали довольно широкий диапазон температур — от 0 до -100 градусов Цельсия.
#физика #термодинамика #вещество
https://nplus1.ru/news/2018/05/10/slippery-ice
nplus1.ru
Скользкость льда объяснили диффузией молекул в поверхностном слое
Физики детально изучили скольжение стального шарика по поверхности льда и показали, что к повышенной скользкости приводит образование подвижных молекул в поверхностном слое льда вследствие разрыва водородных связей. При этом такое поведение характерно для…