Forwarded from AI для Всех
OpenAI научили нейросеть решать (некоторые) олимпиадные задачи по математике
Они создали нейронный доказыватель, который научился решать множество сложных олимпиадных задач для старших классов, включая задачи из конкурсов AMC12 и AIME, а также две задачи, адаптированные из IMO (математики, дайте знать в коментах круто ли это).
Доказыватель использует языковую модель для поиска доказательств формальных утверждений.
Каждый раз, когда OpenAI находят новое доказательство, они используют его в качестве новых обучающих данных (таким образом улучшая нейронную сеть и позволяя ей итеративно находить решения все более трудных утверждений)
📸 Блог-пост
📎 Статья
#ScientificML #math
Они создали нейронный доказыватель, который научился решать множество сложных олимпиадных задач для старших классов, включая задачи из конкурсов AMC12 и AIME, а также две задачи, адаптированные из IMO (математики, дайте знать в коментах круто ли это).
Доказыватель использует языковую модель для поиска доказательств формальных утверждений.
Каждый раз, когда OpenAI находят новое доказательство, они используют его в качестве новых обучающих данных (таким образом улучшая нейронную сеть и позволяя ей итеративно находить решения все более трудных утверждений)
📸 Блог-пост
📎 Статья
#ScientificML #math
🔥8👍5🤔1
Forwarded from AI для Всех
Команда исследователей из DeepMind нашла применение для RL в ядерном синтезе. Ядерный синтез с использованием магнитного удержания является многообещающим путем к достижению устойчивой энергии. Основной проблемой является формирование и поддержание высокотемпературной плазмы внутри сосуда токамака. Для удержания плазмы необходим нечеловеческий уровень управления катушками магнитных приводов.
В новой работе представили метод для проектирования магнитного контроллера токамака, который автономно обучается управлять полным набором катушек. DeepMind успешно демонстрируют контроль за разнообразными конфигурации плазмы.
Предложенный подход демонстрирует потенциал обучения с подкреплением для ускорения исследований в области термоядерного синтеза.
Астрологи явно обьявили 2022 год годом RL. Казалось бы, на фоне успехов в глубоком обучение на обучение с подкреплением (RL) начали забивать даже OpenAI, которые с него начали свой звёздный путь. Но видимо это было затишье перед бурей.
📎 Статья
#ScientificML #RL
В новой работе представили метод для проектирования магнитного контроллера токамака, который автономно обучается управлять полным набором катушек. DeepMind успешно демонстрируют контроль за разнообразными конфигурации плазмы.
Предложенный подход демонстрирует потенциал обучения с подкреплением для ускорения исследований в области термоядерного синтеза.
Астрологи явно обьявили 2022 год годом RL. Казалось бы, на фоне успехов в глубоком обучение на обучение с подкреплением (RL) начали забивать даже OpenAI, которые с него начали свой звёздный путь. Но видимо это было затишье перед бурей.
📎 Статья
#ScientificML #RL
👍9🔥1😱1