Forwarded from AI для Всех
Команда исследователей из DeepMind нашла применение для RL в ядерном синтезе. Ядерный синтез с использованием магнитного удержания является многообещающим путем к достижению устойчивой энергии. Основной проблемой является формирование и поддержание высокотемпературной плазмы внутри сосуда токамака. Для удержания плазмы необходим нечеловеческий уровень управления катушками магнитных приводов.
В новой работе представили метод для проектирования магнитного контроллера токамака, который автономно обучается управлять полным набором катушек. DeepMind успешно демонстрируют контроль за разнообразными конфигурации плазмы.
Предложенный подход демонстрирует потенциал обучения с подкреплением для ускорения исследований в области термоядерного синтеза.
Астрологи явно обьявили 2022 год годом RL. Казалось бы, на фоне успехов в глубоком обучение на обучение с подкреплением (RL) начали забивать даже OpenAI, которые с него начали свой звёздный путь. Но видимо это было затишье перед бурей.
📎 Статья
#ScientificML #RL
В новой работе представили метод для проектирования магнитного контроллера токамака, который автономно обучается управлять полным набором катушек. DeepMind успешно демонстрируют контроль за разнообразными конфигурации плазмы.
Предложенный подход демонстрирует потенциал обучения с подкреплением для ускорения исследований в области термоядерного синтеза.
Астрологи явно обьявили 2022 год годом RL. Казалось бы, на фоне успехов в глубоком обучение на обучение с подкреплением (RL) начали забивать даже OpenAI, которые с него начали свой звёздный путь. Но видимо это было затишье перед бурей.
📎 Статья
#ScientificML #RL
👍9🔥1😱1