2/3 Продолжение. Начало тут.
🔍 Пример:
есть ли связь между числом π и его квадратом? Рассмотрим вектор чисел:
Вопрос: существуют ли такие целые числа a, b, c, не все нули, что:
То есть, есть ли целочисленное линейное соотношение между 1, π и π²?
Запускаем алгоритм PSLQ на численно вычисленных значениях этих чисел (до, скажем, 30 знаков). Алгоритм перебирает линейные комбинации с целыми коэффициентами и проверяет, можно ли получить ноль.
👎Результат:
PSLQ не находит никаких нетривиальных целочисленных соотношений. Это подтверждает, что числа 1, π и π² алгебраически независимы (или, по крайней мере, не линейно зависимы над ℚ).
Но теперь попробуем другой пример.
🔍 Пример: формула Мачина для π
Рассмотрим:
Алгоритм PSLQ находит соотношение:
Это — формула Мачина (одна из классических формул для вычисления π):
👍 Результат: И здесь PSLQ действительно "угадывает" точную алгебраическую формулу по числам с плавающей точкой.
🔥Почему это круто?
Мы из чисел, вычисленных на компьютере, получаем точные формулы.
Это обратный процесс по сравнению с обычной математикой: не от формулы к числу, а от числа к формуле.
Это один из редких примеров, когда компьютер может "угадать" математику.
#ExperimentalMathematics
#IntegerRelations #Algorithms #PSLQ
@easy_about_complex
🔍 Пример:
есть ли связь между числом π и его квадратом? Рассмотрим вектор чисел:
x = [1, π, π²]
Вопрос: существуют ли такие целые числа a, b, c, не все нули, что:
a·1 + b·π + c·π² = 0 ?
То есть, есть ли целочисленное линейное соотношение между 1, π и π²?
Запускаем алгоритм PSLQ на численно вычисленных значениях этих чисел (до, скажем, 30 знаков). Алгоритм перебирает линейные комбинации с целыми коэффициентами и проверяет, можно ли получить ноль.
👎Результат:
PSLQ не находит никаких нетривиальных целочисленных соотношений. Это подтверждает, что числа 1, π и π² алгебраически независимы (или, по крайней мере, не линейно зависимы над ℚ).
Но теперь попробуем другой пример.
🔍 Пример: формула Мачина для π
Рассмотрим:
x = [π, 4·arctan(1/5), -arctan(1/239)]
Алгоритм PSLQ находит соотношение:
π - 4·arctan(1/5) + arctan(1/239) ≈ 0
Это — формула Мачина (одна из классических формул для вычисления π):
π = 4·arctan(1/5) - arctan(1/239)
👍 Результат: И здесь PSLQ действительно "угадывает" точную алгебраическую формулу по числам с плавающей точкой.
🔥Почему это круто?
Мы из чисел, вычисленных на компьютере, получаем точные формулы.
Это обратный процесс по сравнению с обычной математикой: не от формулы к числу, а от числа к формуле.
Это один из редких примеров, когда компьютер может "угадать" математику.
#ExperimentalMathematics
#IntegerRelations #Algorithms #PSLQ
@easy_about_complex
Telegram
Истории (не)успеха (ИИ)ЕИ
1/3
Integer Relations - как числа “договариваются” друг с другом?
В мире чисел есть удивительное явление — integer relations. Представьте: у вас есть несколько чисел (например, √2, число π, логарифмы), и вдруг оказывается, что существует способ сложить…
Integer Relations - как числа “договариваются” друг с другом?
В мире чисел есть удивительное явление — integer relations. Представьте: у вас есть несколько чисел (например, √2, число π, логарифмы), и вдруг оказывается, что существует способ сложить…
👍2
3/3 Продолжение. Начало тут и тут.
Integer Relations в Квантовой Теории Поля (QFT)
В квантовой теории поля расчёт физических величин (например, аномальных магнитных моментов, поправок к массе и т.д.) требует вычисления многократных интегралов — так называемых Feynman интегралов, часто очень сложных и не имеющих аналитического выражения в явном виде.
Проблема:
Ты вычисляешь интеграл до, скажем, 100 знаков после запятой, но не знаешь, можно ли выразить его через известные константы — π, ζ(3), ln(2), polylogs и т.д.
Решение:
Алгоритмы типа PSLQ позволяют взять численно вычисленное значение и попробовать найти точную комбинацию известных функций, которая даёт тот же результат.
Пример: 3-петлевые поправки в QED
В 1996 году, когда исследовали высшие порядки поправок в квантовой электродинамике (QED), вычислялись 3- и 4-петлевые Feynman диаграммы, численно — и оказалось, что значения можно выразить через комбинации таких чисел, как:
-ζ(3) (дзета-функция Римана)
-π²
-ln(2)
-Li₄(½) (полилогарифмы)
и других “трансцендентных” чисел.
Кейс:
David Broadhurst и David Bailey использовали PSLQ, чтобы найти точные выражения для десятков интегралов, связанных с Feynman diagrams, которые до этого считались "неразрешимыми".
Они буквально открывали формулы из чисел, полученных с суперкомпьютеров — в полном смысле слова "экспериментальная математика в физике".
Почему это важно?
👉Позволяет проверять и упрощать физические расчёты, даже в очень сложных теориях.
👉Помогает предсказать форму результата, прежде чем будет найден аналитический вывод.
👉В некоторых случаях выводит физику на след новых математических объектов — например, множественные дзета-значения (MZV), которые сейчас изучаются и в физике, и в алгебраической геометрии.
📎 Ссылка на эти работы тут.
.
#ExperimentalMathematics
#IntegerRelations #Algorithms #PSLQ #QuantumFieldTheory
@easy_about_complex
Integer Relations в Квантовой Теории Поля (QFT)
В квантовой теории поля расчёт физических величин (например, аномальных магнитных моментов, поправок к массе и т.д.) требует вычисления многократных интегралов — так называемых Feynman интегралов, часто очень сложных и не имеющих аналитического выражения в явном виде.
Проблема:
Ты вычисляешь интеграл до, скажем, 100 знаков после запятой, но не знаешь, можно ли выразить его через известные константы — π, ζ(3), ln(2), polylogs и т.д.
Решение:
Алгоритмы типа PSLQ позволяют взять численно вычисленное значение и попробовать найти точную комбинацию известных функций, которая даёт тот же результат.
Пример: 3-петлевые поправки в QED
В 1996 году, когда исследовали высшие порядки поправок в квантовой электродинамике (QED), вычислялись 3- и 4-петлевые Feynman диаграммы, численно — и оказалось, что значения можно выразить через комбинации таких чисел, как:
-ζ(3) (дзета-функция Римана)
-π²
-ln(2)
-Li₄(½) (полилогарифмы)
и других “трансцендентных” чисел.
Кейс:
David Broadhurst и David Bailey использовали PSLQ, чтобы найти точные выражения для десятков интегралов, связанных с Feynman diagrams, которые до этого считались "неразрешимыми".
Они буквально открывали формулы из чисел, полученных с суперкомпьютеров — в полном смысле слова "экспериментальная математика в физике".
Почему это важно?
👉Позволяет проверять и упрощать физические расчёты, даже в очень сложных теориях.
👉Помогает предсказать форму результата, прежде чем будет найден аналитический вывод.
👉В некоторых случаях выводит физику на след новых математических объектов — например, множественные дзета-значения (MZV), которые сейчас изучаются и в физике, и в алгебраической геометрии.
📎 Ссылка на эти работы тут.
.
#ExperimentalMathematics
#IntegerRelations #Algorithms #PSLQ #QuantumFieldTheory
@easy_about_complex
Telegram
Истории (не)успеха (ИИ)ЕИ
1/3
Integer Relations - как числа “договариваются” друг с другом?
В мире чисел есть удивительное явление — integer relations. Представьте: у вас есть несколько чисел (например, √2, число π, логарифмы), и вдруг оказывается, что существует способ сложить…
Integer Relations - как числа “договариваются” друг с другом?
В мире чисел есть удивительное явление — integer relations. Представьте: у вас есть несколько чисел (например, √2, число π, логарифмы), и вдруг оказывается, что существует способ сложить…
👍8