Анализ данных (Data analysis)
46.2K subscribers
2.27K photos
263 videos
1 file
2.03K links
Data science, наука о данных.

@haarrp - админ

@itchannels_telegram - 🔥 главное в ит

@ai_machinelearning_big_data - ML

@machinelearning_interview - вопросы с собесдований по Ml

РКН: clck.ru/3FmyAp
Download Telegram
🌟 ProLLM: бенчмарк на компетентность языковых моделей в программировании.

Разработчик и автор корпоративного code со-pilot Toqan и FinBERT pfgecnbk запустил публичный Leaderbord бенчмарка ProLLM, в котором языковые модели открытого и закрытого типа тестируются на выполнения различных задач в области программирования:

🟠сoding assistant, создание кода на 27 языках, включая R, ассемблер, haskell, delhi и ada;
🟠StackUnseen, вопросы и ответы из неопубликованных в датасетах данных Stack Overflow за последние 3 месяца;
🟠вызов функций, оценка способности LLM интерпретировать запросы и вызывать соответствующие функции с правильными параметрами;
🟠SQL Disambiguation (только на Португальском языке), оценка того, как тестируемая модель выявляет двусмысленность запроса SQL и определяет, когда требуется уточнение;
🟠извлечение сущностей (только на Польском языке), дает представление об общей эффективности извлечения сущностей и маркировки LLM на непопулярных языках.

Помимо узкоспециализированных тестов, бенчмарк выполняет несколько общих тестов: Q&A Assistant, Summarization и LLM as a Judge.

На сегодняшний день возможность самостоятельного тестирования моделей этим бенчмарком не реализована, но разработчики открыты для диалога в вопросе корпоративного применения своей системы оценки, с ними можно связаться через форму на сайте.

Toqan ProLLM Leaderboard


@data_analysis_ml

#AI #LLM #ML #Benchmark
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍96🔥2🥱1🍌1
🧠 WM-Abench — бенчмарк для оценки памяти у мультимодальных LLM

Новый open-source бенчмарк от Maitrix Research оценивает, как мультимодальные модели (текст + изображение) запоминают и используют визуальную информацию.


📌 Что проверяется:
– Могут ли LLM “удерживать в голове” объекты, числа и расположение
– Насколько глубоко модель понимает визуальный контекст
– Способна ли она логически оперировать на основе того, что “видела”

📈 Поддерживаются: GPT‑4o, Gemini, Claude, LLaVA и другие
🔍 Задания: от простых “где лежит мяч?” до сложных визуальных рассуждений

Исследователи из Maitrix оценили 15 SOTA мультимодальных моделей (включая o3 и Gemini 2.5 Pro) по 23 когнитивным измерениям: от базового восприятия до предсказания будущих состояний.

Ключевые выводы:
🔹 Модели хорошо справляются с распознаванием, но проваливаются в 3D-пространственном мышлении, динамике движения и причинно-следственной симуляции.
🔹 VLM склонны “путать” физику: даже изменение цвета объекта сбивает модель на задачах восприятия.
🔹 В сложных задачах предсказания следующего состояния — даже лучшие модели отстают от человека на 34.3%.
🔹 Точность восприятия ≠ понимание: даже “увидев” всё правильно, модели не умеют достроить последствия и взаимодействия объектов.

Отличный инструмент, чтобы понять на что реально способна ваша мультимодальная модель, а не только на красивые демо.

🔗 https://wm-abench.maitrix.org

#LLM #AI #multimodal #benchmark
10👍3🔥3