🧩 ArcMemo — память для LLM, которая учит модель сохранять и переиспользовать концепты при решении задач.
📈 Результат: +7.5% относительно базовой модели на бенчмарке ARC-AGI.
❓ Проблема:
Обычно длинные цепочки рассуждений исчезают после каждого запроса, и модель «забывает» полезные паттерны.
💡 Решение — ArcMemo:
- Сохраняет абстрактные модули в виде концептов на естественном языке или в виде параметрических мини-функций.
- Концепты бывают двух типов:
- Открытые: описание ситуации + подсказка.
- Программные: псевдокод и функции с параметрами.
- После решения задача конспектируется в набор таких концептов.
- При новой задаче модель подбирает релевантные концепты и комбинирует их для решения.
- С обратной связью на тестах память обновляется и расширяется.
📌 Вывод: память в виде модульных концептов повышает переносимость и делает решения более стабильными.
🔗 Paper: arxiv.org/abs/2509.04439
#AI #LLM #ARCAGI #Reasoning #Memory
📈 Результат: +7.5% относительно базовой модели на бенчмарке ARC-AGI.
❓ Проблема:
Обычно длинные цепочки рассуждений исчезают после каждого запроса, и модель «забывает» полезные паттерны.
💡 Решение — ArcMemo:
- Сохраняет абстрактные модули в виде концептов на естественном языке или в виде параметрических мини-функций.
- Концепты бывают двух типов:
- Открытые: описание ситуации + подсказка.
- Программные: псевдокод и функции с параметрами.
- После решения задача конспектируется в набор таких концептов.
- При новой задаче модель подбирает релевантные концепты и комбинирует их для решения.
- С обратной связью на тестах память обновляется и расширяется.
📌 Вывод: память в виде модульных концептов повышает переносимость и делает решения более стабильными.
🔗 Paper: arxiv.org/abs/2509.04439
#AI #LLM #ARCAGI #Reasoning #Memory
❤13🔥4👍2