PyWinAssistant — это первый AI-фреймворк для Windows 10/11 с открытым исходным кодом для управления любыми пользовательскими интерфейсами win32api путем использования визуализации мышления (VoT) и пространственных рассуждений в LLM (без OCR / обнаружения объектов / сегментации — такой подход улучшает качество работы PyWinAssistant).
PyWinAssistant имеет встроенные опции чтобы помогать человеку пользоваться компьютером.
Он правильно понимает любые запросы на естественном языке и планирует выполнение правильных действий в ОС с учетом требований безопасности.
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍14❤6🔥4
—
pip install marqo
Marqo — это open-source фреймворк тензорного поиска, который обеспечивает работу приложений для поиска, извлечения информации и ML-приложений.
Особенности Marqo
— генерация, хранение и поиск векторов из коробки
— позволяет создавать приложения для поиска, разрешения сущностей и изучения данных, используя свои тексты и изображения
— можно создавать сложные семантические запросы, комбинируя взвешенные поисковые термины
— поддерживается фильтрация результатов поиска с помощью DSL запросов Marqo
— позволяет использовать ML-модели от PyTorch, Huggingface, OpenAI и не только
— можно использовать предварительно сконфигурированную модель или подключить свою собственную
— поддержка CPU и GPU
— модели хранятся в индексах HNSW в памяти, что позволяет достичь высокой скорости поиска
— масштабирование до индексов на сотни миллионов документов с помощью горизонтального чередования индексов
— асинхронная и неблокируемая загрузка данных и поиск
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤11👍7🔥3
Мощный курс по MLOps; состоит из 6 модулей, к каждому модулю прилагается подробный Jupyter Notebook со всей нужной теорией и примерами кода
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍24❤5🔥3⚡1
https://www.youtube.com/watch?v=I_6exF29t0k
📌 Код
#youtube #стажировка #яндекс
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍15❤5🔥4🥴4
Встречайте DeepSeek-V2, производительную языковую модель Mixture-of-Experts (MoE), характеризующуюся экономичным обучением и эффективным выводом. Она включает в себя 236B параметров, из которых 21B активируется для каждой лексемы. По сравнению с DeepSeek 67B, DeepSeek-V2 достигает более высокой производительности, при этом экономит 42,5% затрат на обучение, сокращает кэш KV на 93,3% и увеличивает максимальную производительность генерации в 5,76 раза.
Предварительное обучение DeepSeek-V2 было проведено на разнообразном и высококачественном наборе из 8,1 триллиона лексем. После этого комплексного предварительного обучения последовал процесс Supervised Fine-Tuning (SFT) и Reinforcement Learning (RL) для полного раскрытия возможностей DeepSeek-V2.
Результаты оценок подтверждают эффективность такого подхода: DeepSeek-V2 достигает выдающихся результатов как в стандартных бенчмарках, так и в открытой системе оценивания.
🤗 Hugging Face
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤9👍5🔥4
—
python -m pip install featuretools
Featuretools — это Python библиотека для автоматизированной разработки фич, т.е. определения переменных из набора данных для обучения ML-модели.
Featuretools отлично справляется с преобразованием временных и реляционных наборов данных в матрицы признаков для машинного обучения.
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤14👍11🔥3⚡2
pip install llm2vec
pip install flash-attn --no-build-isolation
LLM2Vec позволяет выполнить 3 простых шага:
1) включение двунаправленного внимания
2) обучение с скрытым предсказанием следующей лексемы
3) неконтролируемое контрастное обучение
При этом LLM может быть дополнительно настроена для достижения современной производительности.
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
❤9👍6🔥2
Forwarded from Machinelearning
Это самая совершенная модель из всех, намного превосходящая своих предшественников, включая таинственный gpt2-chatbot.
Она появится уже сегодня в виде приложения для пк.
GPT-4 Omni будет понимать эмоции и тон голоса.
@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
❤8🔥3👍1
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
🔥 Грег Брокман, соучредитель OpenAI, опубликовал 5-минутное видео, в котором он общается с языковой моделью GPT-4 Omni и демонстрирует ее возможности компьютерного зрения.
А вот еще 33 видео с примерами работы ИИ - https://vimeo.com/openai.
А если интерсно, тут обращение самого Сэма Альтмана - https://blog.samaltman.com/gpt-4o
@ai_machinelearning_big_data
А вот еще 33 видео с примерами работы ИИ - https://vimeo.com/openai.
А если интерсно, тут обращение самого Сэма Альтмана - https://blog.samaltman.com/gpt-4o
@ai_machinelearning_big_data
👍14❤6🔥6
—
curl -sL https://plandex.ai/install.sh | bash
Это open-source AI-инструмент для генерации кода с консольным интерфейсом, который помогает выполнять даже большие задачи.
Для выполнения задач, охватывающих несколько файлов и требующих множества шагов, Plandex использует долго работающих AI-агентов. Большие задачи разбиваются на более мелкие подзадачи, которые затем выполняются — и так пока не будет выполнено всё.
Фишки Plandex:
— позволяет экспериментировать, пересматривать и анализировать в защищенной песочнице, прежде чем применять изменения
— даёт возможность пробовать разные модели и настройки моделей, а затем сравнивать результаты
— облегчает контроль над контекстом и над тем, сколько токенов используется
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍8❤6🔥2
This media is not supported in your browser
VIEW IN TELEGRAM
Novu — open-source инфраструктура уведомлений;
Novu предоставляет унифицированный API, который упрощает отправку уведомлений по нескольким каналам, включая In-App, Push, Email, SMS и Chat. С Novu можно создавать пользовательские рабочие процессы и определять условия для каждого канала, не беспокоясь, что уведомления будут доставлены наиболее эффективным способом.
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍8❤3🔥2
С тех пор как LSTM возникли и выдержали испытание временем, они способствовали многочисленным успехам глубокого обучения, в частности, привели к созданию LLM.
Однако появление технологии Transformer с распараллеливаемым самовниманием в основе ознаменовало рассвет новой эры, превзойдя LSTM по масштабу.
Возникают вопросы: как далеко мы можем продвинуться в языковом моделировании при масштабировании LSTM до миллиардов параметров, используя новейшие методы современных LLM, но смягчая известные ограничения LSTM?
• 1 — можно использовать экспоненциальный гейтинг с соответствующими методами нормализации и стабилизации.
• 2 — можно модифицировать структуру памяти LSTM, получая: (I) sLSTM со скалярной памятью, скалярным обновлением и новым смешиванием памяти; (II) полностью распараллеливаемую mLSTM с матричной памятью и правилом обновления ковариации.
Так и возникает xLSTM — расширенная долгая краткосрочная память.
Экспоненциальный гейтинг и модифицированные структуры памяти повышают возможности xLSTM и позволяют сравнить их с современными трансформерами как по производительности, так и по масштабированию.
Держите совсем свежую статью с описанием xLSTM
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍10❤2🔥2