Анализ данных (Data analysis)
46.9K subscribers
2.52K photos
291 videos
1 file
2.2K links
Data science, наука о данных.

@haarrp - админ

@itchannels_telegram - 🔥 главное в ит

@ai_machinelearning_big_data - ML

@machinelearning_interview - вопросы с собесдований по Ml

РКН: clck.ru/3FmyAp
Download Telegram
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
✔️GPT-5 Pro стал лидером ARC-AGI Semi-Private Benchmark

Модель GPT-5 Pro заняла первое место среди всех проверенных frontier-LLM на закрытом бенчмарке ARC-AGI Semi-Private. Этот тест оценивает способность моделей к абстрактному рассуждению и решению сложных задач.

Интересно, что GPT-5 Pro всё ещё уступает результатам старого o3-preview, который OpenAI тестировал ещё в декабре прошлого года. Однако тот экспериментальный вариант был почти в 50 раз дороже в вычислительных затратах и никогда не был публично выпущен.

Версия o3-preview (high) достигала впечатляющих 87,5 % точности на ARC-AGI-1, но потребляла 172 раза ресурсов, чем версия (low). Из-за этого она не попала в официальный лидерборд - по правилам, тесты с compute-стоимостью выше $10 000 не публикуются.

GPT-5 Pro является самой мощной из доступных и подтверждённых моделей на Semi-Private ARC-AGI.

✔️Журнал TIME опубликовал ежегодный список The Best Inventions of 2025 - подборку из 300 инновационных продуктов и идей, которые, по мнению редакции, способны изменить будущее.

В список вошли достижения в самых разных областях: ИИ робототехника, медицина, экология, образование, энергетика и дизайн. Среди ключевых технологий - Claude Sonnet 4 от Anthropic, новая версия ИИ-модели, которая продемонстрировала более точные и безопасные ответы; NVIDIA DGX Spark - «настольный» AI-суперкомпьютер, делающий высокопроизводительные вычисления доступнее; UiPath Agentic Automation, объединяющая работу AI-агентов; и XReal One - компактные AR-очки, приближающие смешанную реальность к массовому использованию.

TIME отметили разработки в области биотехнологий, биопечати тканей, устойчивых источников энергии и переработки отходов. Эти изобретения демонстрируют, как технологии становятся не просто инструментами, а основой будущего образа жизни.
time

✔️ Google Cloud показал 1001 реальный кейс использования генеративного ИИ в бизнесе

Google Cloud опубликовал обновлённый список из 321 корпоративного примера применения генеративного ИИ, что в 10 раз больше, чем годом ранее. Это показывает, что AI уже массово используется в продакшене по всему миру.

В банках и ритейле Commerzbank ИИ обрабатывает 2 млн клиентских чатов с 70% успешных решений, Best Buy ускоряет анализ отзывов, а Mercedes внедрил голосового ассистента на базе Gemini.

Внутри компаний ИИ автоматизирует рутину: Toyota экономит более 10 000 часов в год, Manipal Hospitals сократил передачу смен с 90 до 20 минут, Equifax - 97% сотрудников хотят сохранить AI-лицензии.

Wayfair ускорил настройку окружений на 55%, CME сэкономил 10,5 часов в месяц, а BMW и UPS используют цифровых двойников для моделирования логистики и производств.
Подробнее

✔️ Taiwan отказывается от идеи 50 на 50 с США по производству чипов

Министр экономики Тайваня заявил, что TSMC сохранит свои самые передовые технологии и основное производство на острове, несмотря на предложение США сделать «50 на 50».

Компания вкладывает $165 млрд в шесть фабрик в США, но строит десять на Тайване и планирует новые - там останутся ведущие технологические узлы.

По словам министра, зарубежные заводы допустимы только при реальных заказах, прибыли и отсутствии рисков для безопасности.

Идея «50-50» возникла из-за стремления США увеличить долю внутренних чипов после кризиса поставок 2020–2021 годов.

Аналитики считают, что перенос производства в США слишком дорог и займёт годы, поэтому Вашингтон делает ставку на «friendshoring» - распределённые цепочки поставок между союзниками.
times

✔️ UserLM-8B от Microsoft

Microsoft представила новую модель UserLM-8B, созданную для симуляции поведения пользователя в диалоге. В отличие от обычных LLM, эта модель генерирует реплики от лица человека, включая уточнения, эмоции и ошибки, как в реальном общении.

Модель построена на базе Llama3.1 8B и дообучена на корпусе WildChat-1M, где она анализировала сотни тысяч реальных и синтетических диалогов. Такой подход позволяет создавать реалистичные сценарии общения для тестирования чат-ботов, обучения ассистентов и генерации синтетических данных.
HF

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥4👍31
⚡️ DeepMind выпустила удобный Colab-ноутбук для дообучения модели Gemma 3-270M на задаче генерации эмодзи.

Это лёгкий эксперимент - всего 270 млн параметров, используется QLoRA и короткие последовательности,
поэтому обучение можно спокойно запускать на локальной машине или в Colab.

Модель также легко встраивается в JavaScript -приложения через transformers.js.
Все материалы автор обещал выложить в треде.

Задача генерации эмодзи имеет короткую длину последовательности,поэтому модель обучается эффективно даже с ограниченными ресурсами.
Это даёт шанс понять процесс обучения на практике,
а не просто повторить код в отличие от многих “игрушечных” ноутбуков по RL и fine-tuning,
где видишь синтаксис, но не реальные кривые обучения и поведение модели.

Colab
Please open Telegram to view this post
VIEW IN TELEGRAM
👍12🔥84🤔1