Пост для любителей обучать нейросети на работе, после работы, вместо работы, на выходных, в отпуске, с женой или вместо жены.
На прошлой неделе стартовал Wunder RNN Challenge —соревнование по нейронкам от HFT-фонда Wunder Fund.
Участникам предстоит создать модель, предсказывающую следующее состояние рынка на основе последовательности предыдущих состояний. Именно с такими задачами каждый день работают кванты.
Когда
15 сентября — 1 декабря
Призовой фонд
$13,600
Вы будете работать с реальными биржевыми данными.
Победители получат денежные призы, возможность пообщаться с нашими квантами, а главное — утонченное интеллектуальное удовлетворение от решения сложной задачи.
Wunder Fund с 2014 года занимается HFT, высокочастотным алгоритмическим трейдингом. Мы торгуем на многих биржах по всему миру — как традиционных, так и криптовалютных. Наш дневной торговый оборот превышает $10 млрд.
>_ Участвовать
На прошлой неделе стартовал Wunder RNN Challenge —соревнование по нейронкам от HFT-фонда Wunder Fund.
Участникам предстоит создать модель, предсказывающую следующее состояние рынка на основе последовательности предыдущих состояний. Именно с такими задачами каждый день работают кванты.
Когда
15 сентября — 1 декабря
Призовой фонд
$13,600
Вы будете работать с реальными биржевыми данными.
Победители получат денежные призы, возможность пообщаться с нашими квантами, а главное — утонченное интеллектуальное удовлетворение от решения сложной задачи.
Wunder Fund с 2014 года занимается HFT, высокочастотным алгоритмическим трейдингом. Мы торгуем на многих биржах по всему миру — как традиционных, так и криптовалютных. Наш дневной торговый оборот превышает $10 млрд.
>_ Участвовать
❤5🤨1
🚀 Мощные мультимодальные модели LLaVA-OneVision-1.5
LLaVA-OneVision-1.5 — это открытая платформа для обучения мультимодальных моделей, демонстрирующая выдающиеся результаты при низких затратах. Модели обучаются на высококачественных данных и обеспечивают превосходную эффективность.
🚀 Основные моменты:
- Полностью открытый исходный код и данные для обучения
- Высокое качество и разнообразие обучающих данных
- Эффективная структура для экономного обучения
- Поддержка современных технологий, таких как MoE и FP8
- Оптимизированный код для масштабируемости
📌 GitHub: https://github.com/EvolvingLMMs-Lab/LLaVA-OneVision-1.5
#python
LLaVA-OneVision-1.5 — это открытая платформа для обучения мультимодальных моделей, демонстрирующая выдающиеся результаты при низких затратах. Модели обучаются на высококачественных данных и обеспечивают превосходную эффективность.
🚀 Основные моменты:
- Полностью открытый исходный код и данные для обучения
- Высокое качество и разнообразие обучающих данных
- Эффективная структура для экономного обучения
- Поддержка современных технологий, таких как MoE и FP8
- Оптимизированный код для масштабируемости
📌 GitHub: https://github.com/EvolvingLMMs-Lab/LLaVA-OneVision-1.5
#python
❤3👍1
Как выбрать IT-инфраструктуру для ML и как внедрить MLOps?
Реальные бизнес-кейсы
Присоединяйтесь к Selectel Tech Day 8 октября, чтобы узнать о лучших практиках масштабирования ML-проектов и актуальных трендах инфраструктурного ML.
На отдельном ML-треке обсудят:
🔺Как превратить экспериментальные модели в стабильные продакшн-системы.
🔺Как оценить эффективность внедрения ML-решений.
🔺Какая инфраструктура закроет все потребности ML-проектов.
Вас ждет насыщенная программа: содержательные доклады, экспертная дискуссия и воркшоп. Участие бесплатное, нужно только зарегистрироваться →
Реклама. АО "Селектел". erid:2W5zFGWQBHr
Реальные бизнес-кейсы
Присоединяйтесь к Selectel Tech Day 8 октября, чтобы узнать о лучших практиках масштабирования ML-проектов и актуальных трендах инфраструктурного ML.
На отдельном ML-треке обсудят:
🔺Как превратить экспериментальные модели в стабильные продакшн-системы.
🔺Как оценить эффективность внедрения ML-решений.
🔺Какая инфраструктура закроет все потребности ML-проектов.
Вас ждет насыщенная программа: содержательные доклады, экспертная дискуссия и воркшоп. Участие бесплатное, нужно только зарегистрироваться →
Реклама. АО "Селектел". erid:2W5zFGWQBHr
❤1
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍8🔥4
📢 ML-трек и аналитика на восьмом международном чемпионате по программированию Yandex Cup
Яндекс открыл регистрацию на международный чемпионат по программированию Yandex Cup с призовым фондом 12 млн рублей и финалом в Стамбуле. Участники смогут соревноваться за призы и выход в финал, а ещё — пройти собеседование в Яндекс по упрощённой схеме.
Главное для участников ML-трека и трека «Аналитика»:
— Квалификация в ML-треке: с 15 октября по 5 ноября
— Трек «Аналитика» начнется с пробного тура 20-29 октября, за которым последует квалификация 2 ноября
— Финал пройдет 5-7 декабря и соберет 180 лучших разработчиков со всех направлений
Регистрация на Аналитику и другие направления открыта до 29 октября, а на ML-трек будет доступна с 15 октября по 5 ноября.
Яндекс открыл регистрацию на международный чемпионат по программированию Yandex Cup с призовым фондом 12 млн рублей и финалом в Стамбуле. Участники смогут соревноваться за призы и выход в финал, а ещё — пройти собеседование в Яндекс по упрощённой схеме.
Главное для участников ML-трека и трека «Аналитика»:
— Квалификация в ML-треке: с 15 октября по 5 ноября
— Трек «Аналитика» начнется с пробного тура 20-29 октября, за которым последует квалификация 2 ноября
— Финал пройдет 5-7 декабря и соберет 180 лучших разработчиков со всех направлений
Регистрация на Аналитику и другие направления открыта до 29 октября, а на ML-трек будет доступна с 15 октября по 5 ноября.
❤5
🧠 Интеллектуальный исследовательский агент для глубоких исследований
SGR Research Agent использует Schema-Guided Reasoning для автоматического планирования и цитирования. Он поддерживает многоязычность и адаптируется к изменениям в данных, обеспечивая структурированные отчеты с источниками.
🚀 Основные моменты:
- 🤔 Приоритет уточнений при неопределенности
- 🔄 Автоматическая адаптация плана
- 📎 Управление источниками и цитированием
- 🌍 Поддержка русского и английского языков
- 📊 Генерация детализированных отчетов в Markdown
📌 GitHub: https://github.com/vakovalskii/sgr-deep-research
#python
SGR Research Agent использует Schema-Guided Reasoning для автоматического планирования и цитирования. Он поддерживает многоязычность и адаптируется к изменениям в данных, обеспечивая структурированные отчеты с источниками.
🚀 Основные моменты:
- 🤔 Приоритет уточнений при неопределенности
- 🔄 Автоматическая адаптация плана
- 📎 Управление источниками и цитированием
- 🌍 Поддержка русского и английского языков
- 📊 Генерация детализированных отчетов в Markdown
📌 GitHub: https://github.com/vakovalskii/sgr-deep-research
#python
❤9🔥5👍3😁2
🔥 Новая SOTA среди моделей на 1.5B параметров
QuestA 🤖 показывает двузначный прирост Pass@1 и даже обгоняет ранние 32B-модели:
- AIME24: 72.50% (+10.73%)
- AIME25: 62.29% (+12.79%)
- HMMT25: 41.67% (+10.11%)
🚀 Секрет в обучении: QuestA использует RL с scaffolded-problems — это снимает конфликт между лёгкими и сложными задачами и даёт более масштабируемое рассуждение.
🔓 Всё в открытом доступе:
- Модель: https://huggingface.co/foreverlasting1202/QuestA-Nemotron-1.5B
- Тренировочный пайплайн: https://github.com/foreverlasting1202/QuestA
- Статья: https://arxiv.org/abs/2507.13266
- Блог: https://mercurial-kidney-02d.notion.site/QuestA-Expanding-Reasoning-Capacity-in-LLMs-via-Question-Augmentation-216b21d08abb81a1bcecfe79e7d1e88a?pvs=73
#LLM #Reasoning #AI #SOTA
@data_analysis_ml
QuestA 🤖 показывает двузначный прирост Pass@1 и даже обгоняет ранние 32B-модели:
- AIME24: 72.50% (+10.73%)
- AIME25: 62.29% (+12.79%)
- HMMT25: 41.67% (+10.11%)
🚀 Секрет в обучении: QuestA использует RL с scaffolded-problems — это снимает конфликт между лёгкими и сложными задачами и даёт более масштабируемое рассуждение.
🔓 Всё в открытом доступе:
- Модель: https://huggingface.co/foreverlasting1202/QuestA-Nemotron-1.5B
- Тренировочный пайплайн: https://github.com/foreverlasting1202/QuestA
- Статья: https://arxiv.org/abs/2507.13266
- Блог: https://mercurial-kidney-02d.notion.site/QuestA-Expanding-Reasoning-Capacity-in-LLMs-via-Question-Augmentation-216b21d08abb81a1bcecfe79e7d1e88a?pvs=73
#LLM #Reasoning #AI #SOTA
@data_analysis_ml
❤5👍3🔥2
💰 The Information пишет: Мира Мурати привлекла рекордные $2 млрд для своего нового ИИ-стартапа при оценке $10–12 млрд. Это крупнейший посевной раунд в истории США.
Мурати сохранила полный контроль над компанией: её голос в совете директоров весит больше всех остальных вместе взятых, а у основателей акции с 100-кратным правом голоса.
Инвесторы: Andreessen Horowitz, Accel, Nvidia, AMD и Cisco.
Ставка делается на доступ к вычислительным мощностям, выход в корпорации и масштабирование.
В команду стартапа вошёл Джон Шульман (сооснователь OpenAI) и группа экс-исследователей. Фокус команды будет направлен на обучение моделей и совершенствование их архитектуры.
Компания зарегистрирована как public benefit corporation, обещает открытые публикации и первый продукт уже в ближайшие месяцы (дропнутчто-то в open-source).
🎯 Главная идея стартапа: сделать ИИ предсказуемым и детерминированным.
Команда Мурати уверена, что это решаемая проблема. Если убрать случайность, ИИ станет безопасным для медицины, финансов и других критичных областей.
Источник: theinformation.com/articles/10-billion-enigma-mira-murati
Мурати сохранила полный контроль над компанией: её голос в совете директоров весит больше всех остальных вместе взятых, а у основателей акции с 100-кратным правом голоса.
Инвесторы: Andreessen Horowitz, Accel, Nvidia, AMD и Cisco.
Ставка делается на доступ к вычислительным мощностям, выход в корпорации и масштабирование.
В команду стартапа вошёл Джон Шульман (сооснователь OpenAI) и группа экс-исследователей. Фокус команды будет направлен на обучение моделей и совершенствование их архитектуры.
Компания зарегистрирована как public benefit corporation, обещает открытые публикации и первый продукт уже в ближайшие месяцы (дропнутчто-то в open-source).
🎯 Главная идея стартапа: сделать ИИ предсказуемым и детерминированным.
Команда Мурати уверена, что это решаемая проблема. Если убрать случайность, ИИ станет безопасным для медицины, финансов и других критичных областей.
Источник: theinformation.com/articles/10-billion-enigma-mira-murati
❤11👍4🔥3🤣3🤯1
Бизнесу данные нужны как воздух📊
На их основе компании принимают важные стратегические решения. Поэтому спрос на аналитиков растёт в самых разных сферах: от банковской до медицинской.
На курсе «Аналитика данных с МФТИ» готовят специалистов универсальной квалификации. За 10 месяцев вы научитесь использовать Python для анализа данных, применять методы ИИ в своих задачах и работать с базами данных.
С универсальными знаниями вы сможете строить карьеру в одном из трёх направлений аналитики:
➡️ Аналитика данных.
➡️ Data Science.
➡️ Инженерия данных.
🎓 После обучения получите дипломы о профессиональной переподготовке от МФТИ и Нетологии. Центр развития карьеры поможет с трудоустройством, резюме и портфолио.
Записывайтесь на курс и становитесь универсальным специалистом в аналитике → https://netolo.gy/eovL
Реклама. ООО "Нетология". ИНН 7726464125 Erid: 2VSb5wPuu7P
На их основе компании принимают важные стратегические решения. Поэтому спрос на аналитиков растёт в самых разных сферах: от банковской до медицинской.
На курсе «Аналитика данных с МФТИ» готовят специалистов универсальной квалификации. За 10 месяцев вы научитесь использовать Python для анализа данных, применять методы ИИ в своих задачах и работать с базами данных.
С универсальными знаниями вы сможете строить карьеру в одном из трёх направлений аналитики:
Записывайтесь на курс и становитесь универсальным специалистом в аналитике → https://netolo.gy/eovL
Реклама. ООО "Нетология". ИНН 7726464125 Erid: 2VSb5wPuu7P
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2🥱1
🧠 RamTorch: Эффективное использование памяти для глубокого обучения
RamTorch — это библиотека для PyTorch, оптимизирующая использование памяти при обучении и выводе больших моделей, которые не помещаются в память GPU. Она использует гибридные реализации компонентов нейронных сетей, храня параметры в памяти CPU и передавая их на GPU по мере необходимости.
🚀 Основные моменты:
- Эффективные линейные слои с хранением параметров на CPU
- Асинхронные CUDA потоки для минимизации задержек
- Поддержка оптимизатора ZeRO-1 для распределенного обучения
- Совместимость с существующим кодом PyTorch
📌 GitHub: https://github.com/lodestone-rock/RamTorch
#python
RamTorch — это библиотека для PyTorch, оптимизирующая использование памяти при обучении и выводе больших моделей, которые не помещаются в память GPU. Она использует гибридные реализации компонентов нейронных сетей, храня параметры в памяти CPU и передавая их на GPU по мере необходимости.
🚀 Основные моменты:
- Эффективные линейные слои с хранением параметров на CPU
- Асинхронные CUDA потоки для минимизации задержек
- Поддержка оптимизатора ZeRO-1 для распределенного обучения
- Совместимость с существующим кодом PyTorch
📌 GitHub: https://github.com/lodestone-rock/RamTorch
#python
GitHub
GitHub - lodestone-rock/RamTorch: RAM is all you need
RAM is all you need. Contribute to lodestone-rock/RamTorch development by creating an account on GitHub.
🔥6❤5👍1
⚡ Это прорыв!
Команда UCLA создала оптическую генеративную модель, которая работает на свете, а не на GPU.
В демонстрации шум сначала кодируется в фазовые паттерны с помощью лёгкого энкодера, а затем свободное распространение света (оптический декодер) превращает их в изображения, цифры, одежду, бабочек, лица и даже картины в стиле Ван Гога.
🔥 Главное - во время генерации нет никакой вычислительной нагрузки.
Результаты сопоставимы с цифровыми диффузионными моделями и открывают путь к сверхбыстрому и энергоэффективному ИИ на фотонике.
📄 Paper (Nature): https://nature.com/articles/s41586-025-09446-5#MOESM1
Команда UCLA создала оптическую генеративную модель, которая работает на свете, а не на GPU.
В демонстрации шум сначала кодируется в фазовые паттерны с помощью лёгкого энкодера, а затем свободное распространение света (оптический декодер) превращает их в изображения, цифры, одежду, бабочек, лица и даже картины в стиле Ван Гога.
🔥 Главное - во время генерации нет никакой вычислительной нагрузки.
Результаты сопоставимы с цифровыми диффузионными моделями и открывают путь к сверхбыстрому и энергоэффективному ИИ на фотонике.
📄 Paper (Nature): https://nature.com/articles/s41586-025-09446-5#MOESM1
❤16🔥8👍3👏1