🔥 Zai_org выпускает GLM 4.6!
Новая версия в линейке GLM получила улучшения сразу во всех ключевых направлениях:
- программирование и работа с кодом
- обработка длинных контекстов
- улучшенное рассуждение и поиск
- генерация текста и написание статей
- агентные кейсы и применение в приложениях
RELEASE: https://z.ai/blog/glm-4.6
MODEL 🔜 https://huggingface.co/zai-org/GLM-4.6
Docs: https://docs.z.ai/guides/llm/glm-4.6
Новая версия в линейке GLM получила улучшения сразу во всех ключевых направлениях:
- программирование и работа с кодом
- обработка длинных контекстов
- улучшенное рассуждение и поиск
- генерация текста и написание статей
- агентные кейсы и применение в приложениях
RELEASE: https://z.ai/blog/glm-4.6
MODEL 🔜 https://huggingface.co/zai-org/GLM-4.6
Docs: https://docs.z.ai/guides/llm/glm-4.6
🔥5❤3👍2
Пост для любителей обучать нейросети на работе, после работы, вместо работы, на выходных, в отпуске, с женой или вместо жены.
На прошлой неделе стартовал Wunder RNN Challenge —соревнование по нейронкам от HFT-фонда Wunder Fund.
Участникам предстоит создать модель, предсказывающую следующее состояние рынка на основе последовательности предыдущих состояний. Именно с такими задачами каждый день работают кванты.
Когда
15 сентября — 1 декабря
Призовой фонд
$13,600
Вы будете работать с реальными биржевыми данными.
Победители получат денежные призы, возможность пообщаться с нашими квантами, а главное — утонченное интеллектуальное удовлетворение от решения сложной задачи.
Wunder Fund с 2014 года занимается HFT, высокочастотным алгоритмическим трейдингом. Мы торгуем на многих биржах по всему миру — как традиционных, так и криптовалютных. Наш дневной торговый оборот превышает $10 млрд.
>_ Участвовать
На прошлой неделе стартовал Wunder RNN Challenge —соревнование по нейронкам от HFT-фонда Wunder Fund.
Участникам предстоит создать модель, предсказывающую следующее состояние рынка на основе последовательности предыдущих состояний. Именно с такими задачами каждый день работают кванты.
Когда
15 сентября — 1 декабря
Призовой фонд
$13,600
Вы будете работать с реальными биржевыми данными.
Победители получат денежные призы, возможность пообщаться с нашими квантами, а главное — утонченное интеллектуальное удовлетворение от решения сложной задачи.
Wunder Fund с 2014 года занимается HFT, высокочастотным алгоритмическим трейдингом. Мы торгуем на многих биржах по всему миру — как традиционных, так и криптовалютных. Наш дневной торговый оборот превышает $10 млрд.
>_ Участвовать
❤5🤨2
🚀 Мощные мультимодальные модели LLaVA-OneVision-1.5
LLaVA-OneVision-1.5 — это открытая платформа для обучения мультимодальных моделей, демонстрирующая выдающиеся результаты при низких затратах. Модели обучаются на высококачественных данных и обеспечивают превосходную эффективность.
🚀 Основные моменты:
- Полностью открытый исходный код и данные для обучения
- Высокое качество и разнообразие обучающих данных
- Эффективная структура для экономного обучения
- Поддержка современных технологий, таких как MoE и FP8
- Оптимизированный код для масштабируемости
📌 GitHub: https://github.com/EvolvingLMMs-Lab/LLaVA-OneVision-1.5
#python
LLaVA-OneVision-1.5 — это открытая платформа для обучения мультимодальных моделей, демонстрирующая выдающиеся результаты при низких затратах. Модели обучаются на высококачественных данных и обеспечивают превосходную эффективность.
🚀 Основные моменты:
- Полностью открытый исходный код и данные для обучения
- Высокое качество и разнообразие обучающих данных
- Эффективная структура для экономного обучения
- Поддержка современных технологий, таких как MoE и FP8
- Оптимизированный код для масштабируемости
📌 GitHub: https://github.com/EvolvingLMMs-Lab/LLaVA-OneVision-1.5
#python
❤3👍1
Как выбрать IT-инфраструктуру для ML и как внедрить MLOps?
Реальные бизнес-кейсы
Присоединяйтесь к Selectel Tech Day 8 октября, чтобы узнать о лучших практиках масштабирования ML-проектов и актуальных трендах инфраструктурного ML.
На отдельном ML-треке обсудят:
🔺Как превратить экспериментальные модели в стабильные продакшн-системы.
🔺Как оценить эффективность внедрения ML-решений.
🔺Какая инфраструктура закроет все потребности ML-проектов.
Вас ждет насыщенная программа: содержательные доклады, экспертная дискуссия и воркшоп. Участие бесплатное, нужно только зарегистрироваться →
Реклама. АО "Селектел". erid:2W5zFGWQBHr
Реальные бизнес-кейсы
Присоединяйтесь к Selectel Tech Day 8 октября, чтобы узнать о лучших практиках масштабирования ML-проектов и актуальных трендах инфраструктурного ML.
На отдельном ML-треке обсудят:
🔺Как превратить экспериментальные модели в стабильные продакшн-системы.
🔺Как оценить эффективность внедрения ML-решений.
🔺Какая инфраструктура закроет все потребности ML-проектов.
Вас ждет насыщенная программа: содержательные доклады, экспертная дискуссия и воркшоп. Участие бесплатное, нужно только зарегистрироваться →
Реклама. АО "Селектел". erid:2W5zFGWQBHr
❤1
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍8🔥4
📢 ML-трек и аналитика на восьмом международном чемпионате по программированию Yandex Cup
Яндекс открыл регистрацию на международный чемпионат по программированию Yandex Cup с призовым фондом 12 млн рублей и финалом в Стамбуле. Участники смогут соревноваться за призы и выход в финал, а ещё — пройти собеседование в Яндекс по упрощённой схеме.
Главное для участников ML-трека и трека «Аналитика»:
— Квалификация в ML-треке: с 15 октября по 5 ноября
— Трек «Аналитика» начнется с пробного тура 20-29 октября, за которым последует квалификация 2 ноября
— Финал пройдет 5-7 декабря и соберет 180 лучших разработчиков со всех направлений
Регистрация на Аналитику и другие направления открыта до 29 октября, а на ML-трек будет доступна с 15 октября по 5 ноября.
Яндекс открыл регистрацию на международный чемпионат по программированию Yandex Cup с призовым фондом 12 млн рублей и финалом в Стамбуле. Участники смогут соревноваться за призы и выход в финал, а ещё — пройти собеседование в Яндекс по упрощённой схеме.
Главное для участников ML-трека и трека «Аналитика»:
— Квалификация в ML-треке: с 15 октября по 5 ноября
— Трек «Аналитика» начнется с пробного тура 20-29 октября, за которым последует квалификация 2 ноября
— Финал пройдет 5-7 декабря и соберет 180 лучших разработчиков со всех направлений
Регистрация на Аналитику и другие направления открыта до 29 октября, а на ML-трек будет доступна с 15 октября по 5 ноября.
❤5
🧠 Интеллектуальный исследовательский агент для глубоких исследований
SGR Research Agent использует Schema-Guided Reasoning для автоматического планирования и цитирования. Он поддерживает многоязычность и адаптируется к изменениям в данных, обеспечивая структурированные отчеты с источниками.
🚀 Основные моменты:
- 🤔 Приоритет уточнений при неопределенности
- 🔄 Автоматическая адаптация плана
- 📎 Управление источниками и цитированием
- 🌍 Поддержка русского и английского языков
- 📊 Генерация детализированных отчетов в Markdown
📌 GitHub: https://github.com/vakovalskii/sgr-deep-research
#python
SGR Research Agent использует Schema-Guided Reasoning для автоматического планирования и цитирования. Он поддерживает многоязычность и адаптируется к изменениям в данных, обеспечивая структурированные отчеты с источниками.
🚀 Основные моменты:
- 🤔 Приоритет уточнений при неопределенности
- 🔄 Автоматическая адаптация плана
- 📎 Управление источниками и цитированием
- 🌍 Поддержка русского и английского языков
- 📊 Генерация детализированных отчетов в Markdown
📌 GitHub: https://github.com/vakovalskii/sgr-deep-research
#python
❤10🔥5👍3😁2
🔥 Новая SOTA среди моделей на 1.5B параметров
QuestA 🤖 показывает двузначный прирост Pass@1 и даже обгоняет ранние 32B-модели:
- AIME24: 72.50% (+10.73%)
- AIME25: 62.29% (+12.79%)
- HMMT25: 41.67% (+10.11%)
🚀 Секрет в обучении: QuestA использует RL с scaffolded-problems — это снимает конфликт между лёгкими и сложными задачами и даёт более масштабируемое рассуждение.
🔓 Всё в открытом доступе:
- Модель: https://huggingface.co/foreverlasting1202/QuestA-Nemotron-1.5B
- Тренировочный пайплайн: https://github.com/foreverlasting1202/QuestA
- Статья: https://arxiv.org/abs/2507.13266
- Блог: https://mercurial-kidney-02d.notion.site/QuestA-Expanding-Reasoning-Capacity-in-LLMs-via-Question-Augmentation-216b21d08abb81a1bcecfe79e7d1e88a?pvs=73
#LLM #Reasoning #AI #SOTA
@data_analysis_ml
QuestA 🤖 показывает двузначный прирост Pass@1 и даже обгоняет ранние 32B-модели:
- AIME24: 72.50% (+10.73%)
- AIME25: 62.29% (+12.79%)
- HMMT25: 41.67% (+10.11%)
🚀 Секрет в обучении: QuestA использует RL с scaffolded-problems — это снимает конфликт между лёгкими и сложными задачами и даёт более масштабируемое рассуждение.
🔓 Всё в открытом доступе:
- Модель: https://huggingface.co/foreverlasting1202/QuestA-Nemotron-1.5B
- Тренировочный пайплайн: https://github.com/foreverlasting1202/QuestA
- Статья: https://arxiv.org/abs/2507.13266
- Блог: https://mercurial-kidney-02d.notion.site/QuestA-Expanding-Reasoning-Capacity-in-LLMs-via-Question-Augmentation-216b21d08abb81a1bcecfe79e7d1e88a?pvs=73
#LLM #Reasoning #AI #SOTA
@data_analysis_ml
❤5👍3🔥2
💰 The Information пишет: Мира Мурати привлекла рекордные $2 млрд для своего нового ИИ-стартапа при оценке $10–12 млрд. Это крупнейший посевной раунд в истории США.
Мурати сохранила полный контроль над компанией: её голос в совете директоров весит больше всех остальных вместе взятых, а у основателей акции с 100-кратным правом голоса.
Инвесторы: Andreessen Horowitz, Accel, Nvidia, AMD и Cisco.
Ставка делается на доступ к вычислительным мощностям, выход в корпорации и масштабирование.
В команду стартапа вошёл Джон Шульман (сооснователь OpenAI) и группа экс-исследователей. Фокус команды будет направлен на обучение моделей и совершенствование их архитектуры.
Компания зарегистрирована как public benefit corporation, обещает открытые публикации и первый продукт уже в ближайшие месяцы (дропнутчто-то в open-source).
🎯 Главная идея стартапа: сделать ИИ предсказуемым и детерминированным.
Команда Мурати уверена, что это решаемая проблема. Если убрать случайность, ИИ станет безопасным для медицины, финансов и других критичных областей.
Источник: theinformation.com/articles/10-billion-enigma-mira-murati
Мурати сохранила полный контроль над компанией: её голос в совете директоров весит больше всех остальных вместе взятых, а у основателей акции с 100-кратным правом голоса.
Инвесторы: Andreessen Horowitz, Accel, Nvidia, AMD и Cisco.
Ставка делается на доступ к вычислительным мощностям, выход в корпорации и масштабирование.
В команду стартапа вошёл Джон Шульман (сооснователь OpenAI) и группа экс-исследователей. Фокус команды будет направлен на обучение моделей и совершенствование их архитектуры.
Компания зарегистрирована как public benefit corporation, обещает открытые публикации и первый продукт уже в ближайшие месяцы (дропнутчто-то в open-source).
🎯 Главная идея стартапа: сделать ИИ предсказуемым и детерминированным.
Команда Мурати уверена, что это решаемая проблема. Если убрать случайность, ИИ станет безопасным для медицины, финансов и других критичных областей.
Источник: theinformation.com/articles/10-billion-enigma-mira-murati
❤12👍4🔥3🤣3🤯1
Бизнесу данные нужны как воздух📊
На их основе компании принимают важные стратегические решения. Поэтому спрос на аналитиков растёт в самых разных сферах: от банковской до медицинской.
На курсе «Аналитика данных с МФТИ» готовят специалистов универсальной квалификации. За 10 месяцев вы научитесь использовать Python для анализа данных, применять методы ИИ в своих задачах и работать с базами данных.
С универсальными знаниями вы сможете строить карьеру в одном из трёх направлений аналитики:
➡️ Аналитика данных.
➡️ Data Science.
➡️ Инженерия данных.
🎓 После обучения получите дипломы о профессиональной переподготовке от МФТИ и Нетологии. Центр развития карьеры поможет с трудоустройством, резюме и портфолио.
Записывайтесь на курс и становитесь универсальным специалистом в аналитике → https://netolo.gy/eovL
Реклама. ООО "Нетология". ИНН 7726464125 Erid: 2VSb5wPuu7P
На их основе компании принимают важные стратегические решения. Поэтому спрос на аналитиков растёт в самых разных сферах: от банковской до медицинской.
На курсе «Аналитика данных с МФТИ» готовят специалистов универсальной квалификации. За 10 месяцев вы научитесь использовать Python для анализа данных, применять методы ИИ в своих задачах и работать с базами данных.
С универсальными знаниями вы сможете строить карьеру в одном из трёх направлений аналитики:
Записывайтесь на курс и становитесь универсальным специалистом в аналитике → https://netolo.gy/eovL
Реклама. ООО "Нетология". ИНН 7726464125 Erid: 2VSb5wPuu7P
Please open Telegram to view this post
VIEW IN TELEGRAM
❤3👍1🔥1🥱1
🧠 RamTorch: Эффективное использование памяти для глубокого обучения
RamTorch — это библиотека для PyTorch, оптимизирующая использование памяти при обучении и выводе больших моделей, которые не помещаются в память GPU. Она использует гибридные реализации компонентов нейронных сетей, храня параметры в памяти CPU и передавая их на GPU по мере необходимости.
🚀 Основные моменты:
- Эффективные линейные слои с хранением параметров на CPU
- Асинхронные CUDA потоки для минимизации задержек
- Поддержка оптимизатора ZeRO-1 для распределенного обучения
- Совместимость с существующим кодом PyTorch
📌 GitHub: https://github.com/lodestone-rock/RamTorch
#python
RamTorch — это библиотека для PyTorch, оптимизирующая использование памяти при обучении и выводе больших моделей, которые не помещаются в память GPU. Она использует гибридные реализации компонентов нейронных сетей, храня параметры в памяти CPU и передавая их на GPU по мере необходимости.
🚀 Основные моменты:
- Эффективные линейные слои с хранением параметров на CPU
- Асинхронные CUDA потоки для минимизации задержек
- Поддержка оптимизатора ZeRO-1 для распределенного обучения
- Совместимость с существующим кодом PyTorch
📌 GitHub: https://github.com/lodestone-rock/RamTorch
#python
GitHub
GitHub - lodestone-rock/RamTorch: RAM is all you need
RAM is all you need. Contribute to lodestone-rock/RamTorch development by creating an account on GitHub.
❤6🔥6👍1
⚡ Это прорыв!
Команда UCLA создала оптическую генеративную модель, которая работает на свете, а не на GPU.
В демонстрации шум сначала кодируется в фазовые паттерны с помощью лёгкого энкодера, а затем свободное распространение света (оптический декодер) превращает их в изображения, цифры, одежду, бабочек, лица и даже картины в стиле Ван Гога.
🔥 Главное - во время генерации нет никакой вычислительной нагрузки.
Результаты сопоставимы с цифровыми диффузионными моделями и открывают путь к сверхбыстрому и энергоэффективному ИИ на фотонике.
📄 Paper (Nature): https://nature.com/articles/s41586-025-09446-5#MOESM1
Команда UCLA создала оптическую генеративную модель, которая работает на свете, а не на GPU.
В демонстрации шум сначала кодируется в фазовые паттерны с помощью лёгкого энкодера, а затем свободное распространение света (оптический декодер) превращает их в изображения, цифры, одежду, бабочек, лица и даже картины в стиле Ван Гога.
🔥 Главное - во время генерации нет никакой вычислительной нагрузки.
Результаты сопоставимы с цифровыми диффузионными моделями и открывают путь к сверхбыстрому и энергоэффективному ИИ на фотонике.
📄 Paper (Nature): https://nature.com/articles/s41586-025-09446-5#MOESM1
❤26🔥10👍3👏1
Forwarded from Machinelearning
Физики Гарварда создали первый в мире квантовый компьютер, который работает непрерывно без перезапуска.
Ранее квантовые машины держались миллисекунды, максимум - около 13 секунд.
Новая установка работает более 2 часов и может функционировать бесконечно.
Ключевое новшество - решение проблемы потери атомов: система в реальном времени пополняет кубиты, впрыскивая 300 000 атомов в секунду с помощью оптических инструментов.
Учёные считают, что практические, постоянно работающие квантовые компьютеры могут появиться уже в течение 2 лет - с огромным влиянием на медицину, финансы и научные исследования.
thecrimson
По данным The Information, Anthropic продвигает свою модель Claude как основу для создания enterprise-замен привычных приложений вроде Slack. Компания делает ставку на обучение с подкреплением, чтобы улучшить способности модели к программированию.
Похожую стратегию развивает и xAI Илона Маска, но эксперты сомневаются, что крупные корпорации откажутся от укоренившихся систем вроде SAP или ServiceNow. Более вероятно, что первыми такие AI-first инструменты начнут использовать небольшие стартапы.
Тем временем JPMorgan и другие банки активно заявляют об интеграции решений OpenAI, Anthropic и Google, хотя реальные масштабы затрат пока не соответствуют публичному энтузиазму.
theinformation
Comet, запущенный в июле 2025 года, работает как встроенный ассистент: он умеет анализировать страницы, вытаскивать ключевые детали и сердить по ссылкам, проводя многошаговые исследования.
Perplexity также представила Comet Plus за $5 — партнёрскую подписку, которая открывает доступ к контенту от CNN, The Washington Post, Fortune, Los Angeles Times и Condé Nast (The New Yorker, Wired и др.).
Однако запуск совпал с продолжающимися исками от крупных издателей, включая Dow Jones (The Wall Street Journal) и New York Post, обвиняющих стартап в использовании их материалов для обучения ИИ.
Скачать Comet
TechCrunch пишет, что запуск нового соцприложения Sora 2 вызвал тревогу внутри самой OpenAI. Это TikTok-подобная лента, наполненная видео, созданными ИИ, включая дипфейки самого Сэма Альтмана.
Часть исследователей OpenAI считает, что компания уходит от своей миссии ради хайпового контента. Один из сотрудников прямо заявил: «AI-ленты - пугающие. Я был шокирован, узнав, что мы выпускаем Sora 2…»
Сторонники проекта объясняют, что такие продукты нужны, чтобы финансировать фундаментальные исследования и дать пользователям почувствовать силу технологий. В OpenAI утверждают, что хотят «показать людям что-то классное, чтобы они улыбнулись».
Но вместе с ростом Sora OpenAI рискует повторить судьбу классических соцсетей: зависимость, манипуляции c информацией, проблемы с дипфейками и давлением на метрики вовлечённости.
techcrunch
Китай в 2025 году вложит до 98 млрд долларов, но экспортные ограничения на топовые чипы Nvidia и AMD тормозят прогресс.
Huawei продвигает Ascend 910C, однако по памяти, пропускной способности и софту он уступает решениям Nvidia. США разрешили ограниченные продажи H20 и MI308 в Китай с 15% налогом, но топовые GPU недоступны китацы, и разрыв в производительности всё ещё в пользу американцев.
X
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
❤3👍3🔥2🥰1🤣1
Ищете мощный сервер без переплаты?
Выгодное решение для обработки и анализа больших данных — выделенный сервер конфигурации AR45-NVMe от Selectel. Он подойдет для эффективной работы с многопоточностью и Python, R, Spark в рамках одной машины, а также машинного обучения на CPU.
Преимущества сервера:
- 16 высокочастотных ядер,
- Безлимитный интернет-трафик и приватная сеть — 1 Гбит/с,
- DDoS-защита, публичный IPv4, SLA — 99,8%,
- Автоустановка ОС и загрузка своих ISO-образов,
- Техподдержка 24/7 и замена комплектующих за 3 часа.
Закажите сервер конфигурации AR45-NVMe на сайте в несколько кликов: https://slc.tl/2kf85?erid=2W5zFK8n6et
Выгодное решение для обработки и анализа больших данных — выделенный сервер конфигурации AR45-NVMe от Selectel. Он подойдет для эффективной работы с многопоточностью и Python, R, Spark в рамках одной машины, а также машинного обучения на CPU.
Преимущества сервера:
- 16 высокочастотных ядер,
- Безлимитный интернет-трафик и приватная сеть — 1 Гбит/с,
- DDoS-защита, публичный IPv4, SLA — 99,8%,
- Автоустановка ОС и загрузка своих ISO-образов,
- Техподдержка 24/7 и замена комплектующих за 3 часа.
Закажите сервер конфигурации AR45-NVMe на сайте в несколько кликов: https://slc.tl/2kf85?erid=2W5zFK8n6et
🚀 IBM Granite 4.0 теперь доступен в Unsloth
🧩 Модель в формате GGUF с гибридной архитектурой (Hybrid Mamba) — сочетание плотных слоёв и MoE для ускорения и снижения памяти.
⚡ Основные факты:
- Доступные размеры: Micro (3B), Tiny (7B/1B активный), Small (32B/9B активный).
- Контекст до 128K токенов.
- Тренировка в Unsloth до 2× быстрее и требует на 50% меньше VRAM.
- Поддержка Ollama, llama.cpp и Docker для лёгкого запуска.
🎯 Где полезно: чат-боты, edge-развёртывания, длинные документы, кастомизация через fine-tuning.
Подробнее: https://docs.unsloth.ai/new/ibm-granite-4.0
Hf: https://huggingface.co/collections/unsloth/granite-40-68ddf64b4a8717dc22a9322d
🧩 Модель в формате GGUF с гибридной архитектурой (Hybrid Mamba) — сочетание плотных слоёв и MoE для ускорения и снижения памяти.
⚡ Основные факты:
- Доступные размеры: Micro (3B), Tiny (7B/1B активный), Small (32B/9B активный).
- Контекст до 128K токенов.
- Тренировка в Unsloth до 2× быстрее и требует на 50% меньше VRAM.
- Поддержка Ollama, llama.cpp и Docker для лёгкого запуска.
🎯 Где полезно: чат-боты, edge-развёртывания, длинные документы, кастомизация через fine-tuning.
Подробнее: https://docs.unsloth.ai/new/ibm-granite-4.0
Hf: https://huggingface.co/collections/unsloth/granite-40-68ddf64b4a8717dc22a9322d
❤3👍2🔥1