Анализ данных (Data analysis)
46.3K subscribers
2.3K photos
264 videos
1 file
2.04K links
Data science, наука о данных.

@haarrp - админ

@itchannels_telegram - 🔥 главное в ит

@ai_machinelearning_big_data - ML

@machinelearning_interview - вопросы с собесдований по Ml

РКН: clck.ru/3FmyAp
Download Telegram
This media is not supported in your browser
VIEW IN TELEGRAM
FLUX Krea — дистиллированная опесноср версия модели Krea‑1, полностью совместимая с экосистемой FLUX.

📸 Модель собрана с упором на эстетику, чтобы устранить типичную проблему «AI-эффекта» в изображениях.

💎 В отличие от моделей, обученных на гигантских сырых датасетах, FLUX.1 Krea обучалась на вручную отобранных и высококачественных данных — ради максимального качества и реалистичности.

🖌 Поддерживает image prompts, кастомные стили и другие настройки.

Вы можете:
• протестировать её бесплатно тут: https://krea.ai

• или скачать веса и запускать на своём оборудовании.

🎨 Доступна в основном генераторе изображений Krea — попробуйте прямо сейчас.

🔗 Поробовать : https://krea.ai
🔗 HF: https://huggingface.co/black-forest-labs/FLUX.1-Krea-dev
🔗Comfy Workflow - https://docs.comfy.org/tutorials/flux/flux1-krea-dev

@data_analysis_ml
👍42🔥1
This media is not supported in your browser
VIEW IN TELEGRAM
👾 DreamScene – новый end-to-end фреймворк для генерации высококачественных, редактируемых 3D-сцен по текстовому описанию!

🔹 Scene Planning: GPT-4 автоматически определяет объекты и их пространственные связи для построения гибридного графа.
🔹 Graph-based Placement: алгоритм обеспечивает структурированный компоновку без пересечений.
🔹 Formation Pattern Sampling: многошаговая семплинг-оптимизация генерирует реалистичную геометрию объектов.
🔹 Progressive Camera Sampling: адаптивная стратегия рендеринга для любых локаций — от интерьеров до открытых пространств.
🔹 Финетюнинг и редактирование: перемещение объектов, изменение внешнего вида и анимация 4D-движений.

Узнайте больше и попробуйте демо https://huggingface.co/papers/2507.13985

#AI #3D #TextTo3D #DeepLearning #DreamScene
3👍2🔥1
🚀 MixGRPO от Tencent — теперь в открытом доступе! Новый подход к обучению моделей по человеческим предпочтениям

🔧 Что нового и крутого:

1⃣ Первый фреймворк с гибридным семплированием ODE+SDE — меньше шагов, меньше вычислений
2⃣ До 71% быстрее обучения (вариант MixGRPO‑Flash), при этом точнее и эффективнее, чем DanceGRPO
3⃣ Поддержка ускоренных ODE-решателей — ещё выше скорость без потери качества
4⃣ Работает как с диффузионными, так и с flow-based моделями — требует всего несколько итераций

🔗 Проект: https://tulvgengenr.github.io/MixGRPO-Project-Page/
📦 Код и модели: https://github.com/Tencent-Hunyuan/MixGRPO
📄 Статья: https://arxiv.org/abs/2507.21802

@data_analysis_ml
5👍5🔥1
🚨 ANTHROPIC ОТКЛЮЧИЛА OPENAI ОТ ДОСТУПА К CLAUDE

> Anthropic отозвала доступ OpenAI к API своих моделей Claude
> Заявление: “Технические сотрудники OpenAI использовали наши инструменты для программирования перед запуском GPT-5”
> “К сожалению, это прямое нарушение условий использования”

🔥 Кажется, война ИИ-компаний вышла на новый уровень.

@data_analysis_ml

#GPT5 #openai #ANTHROPIC
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥19😁85👍2
🚀 Шикарный ресурс для всех, кто хочет разобраться как работают модели Qwen3 : Qwen3 From Scratch

Это подробное пошаговое руководство по запуску и анализу моделей Qwen3 — от 0.6B до 32B — с нуля, прямо в PyTorch.

📌 Что внутри:

— Как загрузить модель Qwen3‑0.6B и предобученные веса
— Настройка токенизатора и генерация текста
— Поддержка reasoning-версии модели
— Трюки для ускорения инференса: компиляция, KV-кеш, батчинг

📊 Автор также сравнивает Qwen3 с Llama 3:
✔️ Глубина vs ширина модели
✔️ Производительность на разном железе
✔️ Как ведут себя модели 0.6B, 1.7B, 4B, 8B, 32B

Идеально, если хочешь разобраться, как устроен inference, токенизация и архитектура Qwen3 — без магии и чёрных ящиков.

🖥 Github

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥218👍2
🧠 Что такое "векторы персональности" в ИИ — и зачем они нужны?

Языковые модели иногда ведут себя странно: могут льстить, врать или даже угрожать. Почему? Потому что их "характер" формируется внутри нейросети — и до сих пор был чёрным ящиком.

Anthropic предложила решение: persona vectors — векторы персональности. Это нейронные шаблоны, которые отвечают за конкретные черты модели:
например, *льстивость*, *галлюцинации*, *злобность*.

Что можно с ними делать:

Отслеживать, когда модель "съезжает" в плохое поведение — прямо во время диалога.
Фильтровать данные, которые формируют вредные черты ещё до начала обучения.
Предотвращать появление токсичности — как прививка: немного “злобности” в безопасной форме делает модель устойчивой.
Менять характер модели прямо во время работы: включить “юмор” или отключить “галлюцинации”.

🔬 Векторы находят автоматически: даёшь описание (например, “льстивый = говорит приятное, но неискренне”), и система сама находит нейронный паттерн.
А потом можно его вставить, убрать — и увидеть, как модель *буквально меняет личность*.

Это мощный шаг к тому, чтобы управлять характером ИИ, а не просто наблюдать за его капризами.

📄 Подробности — в свежей работе от Anthropic: https://www.anthropic.com/research/persona-vectors

@data_analysis_ml

#Anthropic #ml #ai #llm
🔥186👍3