📰 На Yandex Neuro Scale 2025 представили обновлённую AI Studio
Платформа позволяет собирать ИИ-агентов без навыков разработки: от голосовых ассистентов на базе realtime API до мультиагентных систем и инструментов вроде AI Search. При желании на платформе можно запустить и самостоятельно написанного агента.
Встроены готовые решения — Нейроюрист, SpeechSense, инструмент для протоколирования встреч. Для агентов доступны быстрые интеграции по шаблону через MCP Hub – там уже доступны Контур.Фокус и amoCRM, вскоре появятся и сервисы Яндекса.
Платформа позволяет собирать ИИ-агентов без навыков разработки: от голосовых ассистентов на базе realtime API до мультиагентных систем и инструментов вроде AI Search. При желании на платформе можно запустить и самостоятельно написанного агента.
Встроены готовые решения — Нейроюрист, SpeechSense, инструмент для протоколирования встреч. Для агентов доступны быстрые интеграции по шаблону через MCP Hub – там уже доступны Контур.Фокус и amoCRM, вскоре появятся и сервисы Яндекса.
🔥8❤6👍5
🚀 GitHub запустил публичное превью GPT-5-Codex для Copilot
OpenAI представила новую модель GPT-5-Codex, оптимизированную под программирование и агентные задачи.
Она доступна пользователям GitHub Copilot в публичном превью.
Модель можно выбрать прямо в VS Code в режимах Ask, Edit и Agent, но только начиная с версии Copilot v1.104.1. Доступ распространяется на тарифы Pro, Pro+, Business и Enterprise, при этом в бизнес- и корпоративных планах администратор должен включить поддержку GPT-5-Codex в настройках.
https://github.blog/changelog/2025-09-23-openai-gpt-5-codex-is-rolling-out-in-public-preview-for-github-copilot/
OpenAI представила новую модель GPT-5-Codex, оптимизированную под программирование и агентные задачи.
Она доступна пользователям GitHub Copilot в публичном превью.
Модель можно выбрать прямо в VS Code в режимах Ask, Edit и Agent, но только начиная с версии Copilot v1.104.1. Доступ распространяется на тарифы Pro, Pro+, Business и Enterprise, при этом в бизнес- и корпоративных планах администратор должен включить поддержку GPT-5-Codex в настройках.
https://github.blog/changelog/2025-09-23-openai-gpt-5-codex-is-rolling-out-in-public-preview-for-github-copilot/
❤6👍3🔥2
🚀 Новое исследование Hunyuan: Reinforcement Learning on Pre-training Data (RLPT)
Этот метод решает главную проблему масштабирования LLM - ограниченность размеченного текста.
🌟 RLPT даёт моделям возможность учиться рассуждениям напрямую на данных предобучения, без дорогой ручной разметки.
Как это работает:
1️⃣ Модель во время обучения сама исследует данные и учится более общим стратегиям рассуждений.
2️⃣ Никакой дополнительной разметки — награды извлекаются прямо из предобучающих данных.
3️⃣ Награды за предсказание следующего сегмента позволяют масштабировать RL на этапе предобучения.
Результаты:
✅ На Qwen3-4B-Base прирост: +3.0 (MMLU), +5.1 (MMLU-Pro), +8.1 (GPQA-Diamond), +6.0 (KOR-Bench), +6.6 (AIME24), +5.3 (AIME25).
✅ Чем больше вычислений, тем сильнее рост.
✅ Технология создаёт базу для дальнейших улучшений в RLVR.
📄 Подробнее: https://arxiv.org/pdf/2509.19249
#AI #RLPT #LLM #MachineLearning #NLP
@data_analysis_ml
Этот метод решает главную проблему масштабирования LLM - ограниченность размеченного текста.
🌟 RLPT даёт моделям возможность учиться рассуждениям напрямую на данных предобучения, без дорогой ручной разметки.
Как это работает:
1️⃣ Модель во время обучения сама исследует данные и учится более общим стратегиям рассуждений.
2️⃣ Никакой дополнительной разметки — награды извлекаются прямо из предобучающих данных.
3️⃣ Награды за предсказание следующего сегмента позволяют масштабировать RL на этапе предобучения.
Результаты:
✅ На Qwen3-4B-Base прирост: +3.0 (MMLU), +5.1 (MMLU-Pro), +8.1 (GPQA-Diamond), +6.0 (KOR-Bench), +6.6 (AIME24), +5.3 (AIME25).
✅ Чем больше вычислений, тем сильнее рост.
✅ Технология создаёт базу для дальнейших улучшений в RLVR.
📄 Подробнее: https://arxiv.org/pdf/2509.19249
#AI #RLPT #LLM #MachineLearning #NLP
@data_analysis_ml
❤13👍5🔥3
Media is too big
VIEW IN TELEGRAM
Главное:
🔹 P3-SAM — первая нативная 3D-модель сегментации деталей
🔹 X-Part — генератор деталей с SOTA-результатами по управляемости и качеству
Ключевые особенности:
1️⃣ Обучение на 3.7 млн форм с чистыми аннотациями без использования 2D SAM
2️⃣ Новый автоматический пайплайн сегментации в 3D — полностью без участия пользователя
3️⃣ Диффузионный пайплайн для разбиения на части с учётом геометрии и семантики
Код доступен на GitHub, веса выложены на Hugging Face, а протестировать модель можно как в облегчённой версии на Hugging Face, так и в полном формате через Hunyuan3D Studio.
→Code: https://github.com/Tencent-Hunyuan/Hunyuan3D-Part
→ Веса: https://huggingface.co/tencent/Hunyuan3D-Part
→ Paper: https://arxiv.org/abs/2509.06784
→ Project page: https://murcherful.github.io/P3-SAM/
Попробовать:
→ (Light version) Hugging Face demo: https://huggingface.co/spaces/tencent/Hunyuan3D-Part
→ (Full version) Hunyuan3D Studio: https://3d.hunyuan.tencent.com/studio
Please open Telegram to view this post
VIEW IN TELEGRAM
❤8👍4🔥2👏1
IT_ONE Cup. Code & Analyst — хакатон для аналитиков и разработчиков, где ты узнаешь, как работает IT-команда, и получишь сильный кейс в портфолио. Выбери трек и реши одну из задач:
→ Проанализируй BPMN-модель кредитного процесса и подготовь ТЗ на систему мониторинга эффективности.
→ Разработай сервис, который в реальном времени следит за переводами и оповещает о подозрительных операциях.
🏆 Призовой фонд: 900 000 рублей
💻 Формат: онлайн
🗓 Регистрация до 16 октября: https://cnrlink.com/itonecupmsudataanml
Приглашаем системных аналитиков, разработчиков и менеджеров проектов. Размер команды — от 1 до 5 человек.
Что тебя ждёт:
• Применишь навыки системного анализа, построения архитектуры и работы с потоковыми данными.
• Получишь готовый проект в портфолио.
• Для участников ТОП-5 команд в каждом треке — фирменный мерч.
Задачи соревнования:
Трек 1. Навигатор оптимизации. Проанализируй кредитный процесс банка, выяви узкие места и создай ТЗ для системы мониторинга производительности. Решение поможет оптимизировать критически важные процессы.
Трек 2. Финансовый радар. Разработай сервис для анализа транзакций в реальном времени. Архитектура должна включать правила обнаружения мошенничества и поддержку различных алгоритмов обработки.
Ждём тебя на IT_ONE Cup. Code & Analyst — старт 17 октября на Codenrock: https://cnrlink.com/itonecupmsudataanml
→ Проанализируй BPMN-модель кредитного процесса и подготовь ТЗ на систему мониторинга эффективности.
→ Разработай сервис, который в реальном времени следит за переводами и оповещает о подозрительных операциях.
💻 Формат: онлайн
Приглашаем системных аналитиков, разработчиков и менеджеров проектов. Размер команды — от 1 до 5 человек.
Что тебя ждёт:
• Применишь навыки системного анализа, построения архитектуры и работы с потоковыми данными.
• Получишь готовый проект в портфолио.
• Для участников ТОП-5 команд в каждом треке — фирменный мерч.
Задачи соревнования:
Трек 1. Навигатор оптимизации. Проанализируй кредитный процесс банка, выяви узкие места и создай ТЗ для системы мониторинга производительности. Решение поможет оптимизировать критически важные процессы.
Трек 2. Финансовый радар. Разработай сервис для анализа транзакций в реальном времени. Архитектура должна включать правила обнаружения мошенничества и поддержку различных алгоритмов обработки.
Ждём тебя на IT_ONE Cup. Code & Analyst — старт 17 октября на Codenrock: https://cnrlink.com/itonecupmsudataanml
Please open Telegram to view this post
VIEW IN TELEGRAM
❤6👍3🔥2
🎛️ Claude Squad
Инструмент ориентирован на управление несколькими терминальными агентами искусственного интеллекта (Claude Code, Aider, Codex, OpenCode и Amp).
Проект помогает организовывать взаимодействие разных ИИ и командных инструментов и привлёк более 3,6 тыс. звёзд.
🟠 Ссылка
@data_analysis_ml
Инструмент ориентирован на управление несколькими терминальными агентами искусственного интеллекта (Claude Code, Aider, Codex, OpenCode и Amp).
Проект помогает организовывать взаимодействие разных ИИ и командных инструментов и привлёк более 3,6 тыс. звёзд.
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
❤5👍3🔥1
⚡️ Новые модели для кодинга от Kwaipilot: KAT-Dev-32B и KAT-Coder
- KAT-Dev-32B — 62.4% на SWE-Bench Verified, входит в топ-5 среди open-source моделей
- KAT-Coder — 73.4% на SWE-Bench Verified, результат на уровне лучших проприетарных решений
🔗 Попробовать: https://huggingface.co/Kwaipilot/KAT-Dev
- KAT-Dev-32B — 62.4% на SWE-Bench Verified, входит в топ-5 среди open-source моделей
- KAT-Coder — 73.4% на SWE-Bench Verified, результат на уровне лучших проприетарных решений
🔗 Попробовать: https://huggingface.co/Kwaipilot/KAT-Dev
2🔥5❤4👍4
This media is not supported in your browser
VIEW IN TELEGRAM
- Выглядит как обычная таблица, но вместо формул — тысячи моделей
- Поддержка OpenAI-совместимых и локальных LLM
- Можно добавлять столбцы с промптами, редактировать данные вручную или через лайки
- Запуск онлайн или локально (Docker / pnpm)
- Полностью опенсорс (Apache-2.0), легко встроить в пайплайны
- Подходит для классификации, трансформации данных, синтетики и «vibe-тестов» моделей
⚡️ Попробовать
#AI #NoCode #datasets #HuggingFace #LLM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤13🔥4👍2👏2
Alibaba Group представила Memp — новый фреймворк, который даёт LLM-агентам обучаемую и обновляемую процедурную память.
📈 Результат — более высокая успешность и эффективность при сложных задачах.
🧠 Memp превращает прошлый опыт агентов в детальные инструкции и абстрактные стратегии, постоянно совершенствуясь по мере накопления данных.
🔄 Память можно даже передавать более слабым моделям, повышая их возможности.
https://huggingface.co/papers/2508.06433
📈 Результат — более высокая успешность и эффективность при сложных задачах.
🧠 Memp превращает прошлый опыт агентов в детальные инструкции и абстрактные стратегии, постоянно совершенствуясь по мере накопления данных.
🔄 Память можно даже передавать более слабым моделям, повышая их возможности.
https://huggingface.co/papers/2508.06433
❤8👍4🔥3❤🔥1
🔊 OpenAI готовится выпускать свое первое «железо» к 2026–2027
Что происходит:
- В OpenAI пришло уже более 24 специалистов из Apple в этом году - в области интерфейсов, камер, аудио, носимых устройств и производства. Команду ведёт Тан Тан, 25 лет проработавший в Apple, теперь - Chief Hardware Officer OpenAI.
- Один из описанных концептов - умная колонка без экрана, плюс исследуются очки, диктофон и носимый пин - как дополнение к смартфону или ноутбуку.
- OpenAI обсуждает модули колонок с Goertek и опирается на китайскую цепочку поставок Apple, что ускорит массовый запуск, но усиливает геополитические риски.
- Фундамент — сделка на $6,5 млрд: покупка io Products у Джони Айва, чья команда теперь интегрирована в OpenAI (при этом LoveFrom продолжает независимую работу).
⚡ Реалии рынка: провал Humane Pin (HP купила и закрыла за $116M) показывает, насколько жестким является сегмент.
🎙️ Если первый продукт будет без экрана и голосоцентричным - успех зависит от:
- дальнобойных микрофонных массивов
- beamforming и низкой задержки wake word
- on-device фильтрации
- плавного облачного хэнд-оффа для быстрых ответов в реальных условиях.
Источник: https://www.theinformation.com/articles/openai-raids-apple-hardware-talent-manufacturing-partners
Что происходит:
- В OpenAI пришло уже более 24 специалистов из Apple в этом году - в области интерфейсов, камер, аудио, носимых устройств и производства. Команду ведёт Тан Тан, 25 лет проработавший в Apple, теперь - Chief Hardware Officer OpenAI.
- Один из описанных концептов - умная колонка без экрана, плюс исследуются очки, диктофон и носимый пин - как дополнение к смартфону или ноутбуку.
- OpenAI обсуждает модули колонок с Goertek и опирается на китайскую цепочку поставок Apple, что ускорит массовый запуск, но усиливает геополитические риски.
- Фундамент — сделка на $6,5 млрд: покупка io Products у Джони Айва, чья команда теперь интегрирована в OpenAI (при этом LoveFrom продолжает независимую работу).
⚡ Реалии рынка: провал Humane Pin (HP купила и закрыла за $116M) показывает, насколько жестким является сегмент.
🎙️ Если первый продукт будет без экрана и голосоцентричным - успех зависит от:
- дальнобойных микрофонных массивов
- beamforming и низкой задержки wake word
- on-device фильтрации
- плавного облачного хэнд-оффа для быстрых ответов в реальных условиях.
Источник: https://www.theinformation.com/articles/openai-raids-apple-hardware-talent-manufacturing-partners
🔥8❤2👍2🤨1
🚀 Вышел Postgres 18 — с поддержкой Async I/O
Раньше все операции чтения были блокирующими, теперь - нет.
Результат: огромный прирост производительности для приложений с интенсивным чтением.
⚡️ Async I/O включён по умолчанию в Postgres 18!
Что интересного:
- Новый алгоритм skip scan для многостолбцовых индексов
- Параллельное построение GIN-индексов (JSON, полнотекст)
- Виртуальные генерируемые столбцы (значения считаются на лету)
- Функция
- Сохранение статистики планировщика при мажорных апгрейдах
- Поддержка OAuth 2.0, улучшения TLS и безопасности
- Новый протокол взаимодействия клиентов и утилит — v3.2
🟠 Релиз: https://www.postgresql.org/about/news/postgresql-18-released-3142/
Раньше все операции чтения были блокирующими, теперь - нет.
Результат: огромный прирост производительности для приложений с интенсивным чтением.
⚡️ Async I/O включён по умолчанию в Postgres 18!
Что интересного:
- Новый алгоритм skip scan для многостолбцовых индексов
- Параллельное построение GIN-индексов (JSON, полнотекст)
- Виртуальные генерируемые столбцы (значения считаются на лету)
- Функция
uuidv7()
— UUID с временной сортировкой - Сохранение статистики планировщика при мажорных апгрейдах
- Поддержка OAuth 2.0, улучшения TLS и безопасности
- Новый протокол взаимодействия клиентов и утилит — v3.2
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥25👍6❤4
Бизнесу данные нужны как воздух📊
На их основе компании принимают важные стратегические решения. Поэтому спрос на аналитиков растёт в самых разных сферах: от банковской до медицинской.
На курсе «Аналитика данных с МФТИ» готовят специалистов универсальной квалификации. За 10 месяцев вы научитесь использовать Python для анализа данных, применять методы ИИ в своих задачах и работать с базами данных.
С универсальными знаниями вы сможете строить карьеру в одном из трёх направлений аналитики:
➡️ Аналитика данных.
➡️ Data Science.
➡️ Инженерия данных.
🎓 После обучения получите дипломы о профессиональной переподготовке от МФТИ и Нетологии. Центр развития карьеры поможет с трудоустройством, резюме и портфолио.
Записывайтесь на курс и становитесь универсальным специалистом в аналитике → https://netolo.gy/eovL
Реклама. ООО "Нетология". ИНН 7726464125 Erid: 2VSb5wPuu7P
На их основе компании принимают важные стратегические решения. Поэтому спрос на аналитиков растёт в самых разных сферах: от банковской до медицинской.
На курсе «Аналитика данных с МФТИ» готовят специалистов универсальной квалификации. За 10 месяцев вы научитесь использовать Python для анализа данных, применять методы ИИ в своих задачах и работать с базами данных.
С универсальными знаниями вы сможете строить карьеру в одном из трёх направлений аналитики:
Записывайтесь на курс и становитесь универсальным специалистом в аналитике → https://netolo.gy/eovL
Реклама. ООО "Нетология". ИНН 7726464125 Erid: 2VSb5wPuu7P
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1
💸 BigTech удваивает ставки на ИИ
- В 2025 компании потратят $345 млрд на AI-инфраструктуру - рост в 2,5 раза за два года.
- Для сравнения: мировой телеком тратит ~$1,5 трлн.
- Проект OpenAI Stargate ($500 млрд к 2029) = ~25% от прогнозируемых $2 трлн при росте в 58% год за годом.
Сэм Альтман видит экспоненту — и она уже в цифрах.
- В 2025 компании потратят $345 млрд на AI-инфраструктуру - рост в 2,5 раза за два года.
- Для сравнения: мировой телеком тратит ~$1,5 трлн.
- Проект OpenAI Stargate ($500 млрд к 2029) = ~25% от прогнозируемых $2 трлн при росте в 58% год за годом.
Сэм Альтман видит экспоненту — и она уже в цифрах.
❤5
This media is not supported in your browser
VIEW IN TELEGRAM
Save the date — 30 октября идем на Яндекс Analytics Talks Meetup
Аналитики Городских сервисов Яндекса расскажут о том, как эффективно использовать данные и искать точки роста продуктов. В программе:
Доклады о том, как создавать продукты и делать их лучше для пользователей. Поговорим про новые фичи, поделимся метриками и сложностями при запусках. Дискуссия про LLM и GenAI в контексте DWH и аналитики — обсудим, приносят ли инструменты реальную пользу или это только хайп.
А еще афтепати с настолками и неформальное общение с экспертами Городских сервисов Яндекса.
📌 30 октября, сбор гостей с 18:00
📌 Москва, офлайн
Регистрируйтесь и зовите друзей!
Мероприятие бесплатное. Количество мест ограничено — пожалуйста, дождитесь нашего подтверждения.
Аналитики Городских сервисов Яндекса расскажут о том, как эффективно использовать данные и искать точки роста продуктов. В программе:
Доклады о том, как создавать продукты и делать их лучше для пользователей. Поговорим про новые фичи, поделимся метриками и сложностями при запусках. Дискуссия про LLM и GenAI в контексте DWH и аналитики — обсудим, приносят ли инструменты реальную пользу или это только хайп.
А еще афтепати с настолками и неформальное общение с экспертами Городских сервисов Яндекса.
📌 30 октября, сбор гостей с 18:00
📌 Москва, офлайн
Регистрируйтесь и зовите друзей!
Мероприятие бесплатное. Количество мест ограничено — пожалуйста, дождитесь нашего подтверждения.
🥱2❤1
This media is not supported in your browser
VIEW IN TELEGRAM
🚀 Datarus Jupyter Agent: Умный анализ данных
Datarus Jupyter Agent — это мощная система многоступенчатого рассуждения, позволяющая выполнять сложные аналитические задачи с автоматическим восстановлением ошибок и синтезом результатов. Интеграция с Jupyter и Docker обеспечивает надежную среду для анализа данных.
🚀 Основные моменты:
- Многоступенчатое рассуждение с использованием модели Datarus
- Интеграция с Docker для изолированного выполнения
- Поддержка TensorFlow, PyTorch и scikit-learn
- Автоматическое восстановление ошибок
- Управление Jupyter-ноутбуками и экспорт результатов
📌 GitHub: https://github.com/DatarusAI/Datarus-JupyterAgent
@data_analysis_ml
Datarus Jupyter Agent — это мощная система многоступенчатого рассуждения, позволяющая выполнять сложные аналитические задачи с автоматическим восстановлением ошибок и синтезом результатов. Интеграция с Jupyter и Docker обеспечивает надежную среду для анализа данных.
🚀 Основные моменты:
- Многоступенчатое рассуждение с использованием модели Datarus
- Интеграция с Docker для изолированного выполнения
- Поддержка TensorFlow, PyTorch и scikit-learn
- Автоматическое восстановление ошибок
- Управление Jupyter-ноутбуками и экспорт результатов
📌 GitHub: https://github.com/DatarusAI/Datarus-JupyterAgent
@data_analysis_ml
❤8🔥2👍1
МТС приглашает на масштабный ИТ-чемпионат True Tech Champ 2025!
Соревнования пройдут в двух треках: алгоритмы и программирование роботов. Участвовать могут начинающие ИТ-специалисты и опытные разработчики.
В этом году ты сможешь:
— решать алгоритмические задачи в индивидуальном зачете;
— объединиться в команду с другими участниками и управлять роботом в лабиринте с помощью кода;
— попасть на офлайн шоу-финал в качестве участника или зрителя;
— побороться за призовой фонд 10 250 000 рублей.
Отборочные этапы состоятся онлайн, финал — 21 ноября в МТС Live Холл в Москве.
Регистрация открыта до 20 октября. Подай заявку прямо сейчас.
Соревнования пройдут в двух треках: алгоритмы и программирование роботов. Участвовать могут начинающие ИТ-специалисты и опытные разработчики.
В этом году ты сможешь:
— решать алгоритмические задачи в индивидуальном зачете;
— объединиться в команду с другими участниками и управлять роботом в лабиринте с помощью кода;
— попасть на офлайн шоу-финал в качестве участника или зрителя;
— побороться за призовой фонд 10 250 000 рублей.
Отборочные этапы состоятся онлайн, финал — 21 ноября в МТС Live Холл в Москве.
Регистрация открыта до 20 октября. Подай заявку прямо сейчас.
❤4
🧲 Caltech сделал рекордный квантовый компьютер — 6 100 кубитов на нейтральных атомах.
💡 В чём прорыв:
Кубиты держатся 12,6 секунд - значит, можно сделать миллионы операций, пока они не «сломаются» от шума.
Управление с точностью 99,98% - критично, потому что коррекция ошибок работает только при редких сбоях.
Лазеры-«пинцеты» разделяют один луч на 12 000 мини-ловушек, которые удерживают атомы в вакууме.
Атомы можно переставлять, не теряя квантовое состояние - это даёт гибкость системе.
🚀 Конкуренты (IBM, Quantinuum) тоже гонят: цель — 100 000 кубитов к 2033 году и полная защита от ошибок к 2029.
decrypt.co/341716/caltech-builds-worlds-largest-neutral-atom-quantum-computer
💡 В чём прорыв:
Кубиты держатся 12,6 секунд - значит, можно сделать миллионы операций, пока они не «сломаются» от шума.
Управление с точностью 99,98% - критично, потому что коррекция ошибок работает только при редких сбоях.
Лазеры-«пинцеты» разделяют один луч на 12 000 мини-ловушек, которые удерживают атомы в вакууме.
Атомы можно переставлять, не теряя квантовое состояние - это даёт гибкость системе.
🚀 Конкуренты (IBM, Quantinuum) тоже гонят: цель — 100 000 кубитов к 2033 году и полная защита от ошибок к 2029.
decrypt.co/341716/caltech-builds-worlds-largest-neutral-atom-quantum-computer
👍11🤣3❤2🔥1
🔥 Zai_org выпускает GLM 4.6!
Новая версия в линейке GLM получила улучшения сразу во всех ключевых направлениях:
- программирование и работа с кодом
- обработка длинных контекстов
- улучшенное рассуждение и поиск
- генерация текста и написание статей
- агентные кейсы и применение в приложениях
RELEASE: https://z.ai/blog/glm-4.6
MODEL 🔜 https://huggingface.co/zai-org/GLM-4.6
Docs: https://docs.z.ai/guides/llm/glm-4.6
Новая версия в линейке GLM получила улучшения сразу во всех ключевых направлениях:
- программирование и работа с кодом
- обработка длинных контекстов
- улучшенное рассуждение и поиск
- генерация текста и написание статей
- агентные кейсы и применение в приложениях
RELEASE: https://z.ai/blog/glm-4.6
MODEL 🔜 https://huggingface.co/zai-org/GLM-4.6
Docs: https://docs.z.ai/guides/llm/glm-4.6
🔥5❤3👍1