Ivan Begtin
8.09K subscribers
1.98K photos
3 videos
102 files
4.69K links
I write about Open Data, Data Engineering, Government, Privacy, Digital Preservation and other gov related and tech stuff.

Founder of Dateno https://dateno.io

Telegram @ibegtin
Facebook - https://facebook.com/ibegtin
Secure contacts [email protected]
Download Telegram
Как обещал пишу о том как работать с API Dateno, пока на уровне совсем азов, а далее будут примеры на Python и других языках. Может быть даже SDK, телеграм бот и не только.

1. Идём на Dateno.io, нажимаем на Sign In и регистрируемся на сайте my.dateno.io, там же получаем ключ
2. Открывает документацию на API по адресу api.dateno.io и смотрим как устроены запросы
3. Берём командную строку или UI инструмент или Python и делаем запрос к эндпоинту. Например такой запрос: https://api.dateno.io/index/0.1/query?apikey=my_personal_key&q=Nuclear&filters="source.countries.name"="Kazakhstan" где my_personal_key ключ из личного кабинета.
4. Получаем ответом JSON с результатами поиска по ключевому слову "Nuclear" и по стране Казахстан (Kazakhstan). В ответе ссылки на статистику связанную с ядерной энергетикой страны
5. Параметр filters можно передавать много раз и задавать не только страну, но и тип ПО (source.software.name), тип каталога данных source.catalog_type или тип владельца каталога данных "source.owner_type".
6. Фильтры - это фасеты. При запросе они возвращаются в атрибуте facetDistribution. Можно сделать вначале запрос без фасетов, получить найденные значения и далее фильтровать. Если будет запрос от пользователей, то мы опубликуем, в дополнение к API, полные значения фасетов.
7. В результатах поиска есть ссылка на первоисточник, но нет ссылок на ресурсы которые файлы или API. Чтобы из получить надо сделать запрос к точке подключения https://api.dateno.io/search/0.1/entry/{entry_id}?apikey=my_personal_key где entry_id - это идентификатор записи из результатов поиска. Ресурсов может не быть, иногда, может быть только один как в случае на картинке, а может быть много, десятки. Поэтому к ним запросы индивидуально.

API - это уникальная фича Dateno, открытого API нет у Google Dataset Search и большинства поисковиков по данным. Оно есть только у некоторых поисковиков по научным данным/ресурсам, но они сильно меньше по размеру чем индекс Dateno.

Пишите мне если про API будут вопросы, они почти наверняка появятся.

#opendata #api #dateno #datasearch #data
В рубрике как это устроено у них статистический портал Канады [1] фактически превращённый в портал открытых данных. В общей сложности более 12 тысяч наборов данных из которых 11.5 тысяч - это табличные данные индикаторов с возможностью их выгрузки в форматах CSV и SDMX, а также через открытое API [2].

Характерная особенность что их аналитические тексты - это де факто data stories в форме лонгридов к которым всегда приложены таблицы с данными в их же системе [3].

То есть даже те кто приходит почитать текст имеют возможность сразу открыть таблицу и изучить данные.

Внутри всё работает на SDMX движке и есть возможность работать с API основанном на SDMX для подключения к данным. [4]

В принципе, это иллюстрация одного из трендов развития статистических продуктов в сторону профессиональных стандартов работы с данными, в данном случае SDMX.

Ссылки:
[1] https://www150.statcan.gc.ca/n1/en/type/data?MM=1
[2] https://www.statcan.gc.ca/en/developers?HPA=1
[3] https://www150.statcan.gc.ca/n1/daily-quotidien/241003/dq241003a-eng.htm
[4] https://www150.statcan.gc.ca/t1/wds/sdmx/statcan/rest/data/DF_17100005/1.1.1

#statistics #canada #opendata #sdmx #api #data
В рубрике как это устроено у них пакет для Python под названием ... Германия, в оригинале deutschland [1] звучит странно, а содержание весьма логично. Этот пакет - это набор функций и классов для доступа к наиболее значимым наборам данных и API Германии. Сами данные предоставляются и API поверх данных и в виде сервисов предоставляются через портал bund.dev [2] где они задокументированы и общедоступны.

А пакет для python выглядит как логичное развитие и дополнение, значительно снижающие порог входа к использованию этих данных.

Заодно можно обратить внимание что чуть ли не основные примеры про работу с геоданными и данными регистра компаний.

Особенность в том что этот проект негосударственный и делается командой активистов.

Ссылки:
[1] https://github.com/bundesAPI/deutschland
[2] https://bund.dev

#germany #data #api #opendata