Ivan Begtin
9.36K subscribers
2.24K photos
4 videos
106 files
4.94K links
I write about Open Data, Data Engineering, Government, Privacy, Digital Preservation and etc.

Founder of Dateno https://dateno.io

Telegram @ibegtin
Facebook - https://facebook.com/ibegtin
Email [email protected]

Ads/promotion agent: @k0shk
Download Telegram
Я несколько лет назад регулярно выступал с презентациями на тему Как и где искать данные? в основном рассказывая про внутрироссийские источники данных и мои лекции были, в основном, о том как находить данные для гражданского или государственного проекта. Я тогда делал акцент на анализе государственных информационных систем, ресурсов и основной логике появления данных от полномочий органов власти.

При этом, как оказалось, в мире довольно мало открытых методик по инвентаризации данных. Вернее практически их нет и то что есть сосредоточено в двух областях: научные данные и дата-журналистика.

Что характерно, у большей части крупных зарубежных университетов есть руководства по поиску исследовательских данных. Они легко гуглятся по "finding and re-using research data", я не так давно стал собирать наиболее интересные/полезные и вот несколько примеров:
- Руководство от University of Bath https://library.bath.ac.uk/research-data/finding-data/home
- Руководство от LIBER Europe https://www.youtube.com/watch?v=6PRlf8KiFpA
- Курс в Университете Осло https://www.ub.uio.no/english/courses-events/courses/other/research-data/time-and-place/rdm-uio-spring2023-7.html

А ещё есть модуль Finding hidden data on the Web в курсе на портале данных Евросоюза https://data.europa.eu/elearning/en/module12/#/id/co-01 Поиск скрытых данных в публичных источниках вообще моя любимая тема, столько интересного находится таким образом.

Некоторые рекомендации по поиску данных есть для дата-журналистов, но они находятся внутри общих руководств по дата-журналистике и часто совмещены с гайдами для журналистов расследователей по верификации источников, поиску данных в соцсетях и OSINT.

Отдельная тема - это поиск и систематизация корпоративных данных. Там почти все методики и гайды не про поиск, а про каталогизацию, поскольку задача поиска лишь один из способов использования корпоративных каталогов данных.

В итоге у всего этого отсутствует теоретическая база, data discovery как дисциплина научная, в первую очередь, мало представлена, а жаль слишком многое приходится додумывать самостоятельно.

#thoughts #datadiscovery #data
В рубрике интересных наборов данных WikiTables [1] набор данных из 1.6 миллионов таблиц извлечённых из английской Википедии и сопровождающий его набор состоящих из записей в этих таблицах слинкованными с объектами в DBPedia. Помимо того что это само по себе интересная и важная задача при создании связанного графа знаний, это ещё и огромная база для обучения разного рода алгоритмом.

Данные связаны со статьёй TabEL: Entity Linking in WebTables [2] ещё 2015 года и ещё много где использовались и используются они и по сей день.

Лично я эти данные использую для проверки и обучения утилиты metacrafter для идентификации семантических типов данных, но им не ограничиваясь.

Ссылки:
[1] https://websail-fe.cs.northwestern.edu/TabEL/index.html
[2] https://www.semanticscholar.org/paper/TabEL%3A-Entity-Linking-in-Web-Tables-Bhagavatula-Noraset/8ffcad9346c4978a211566fde6807d6fb4bfa5ed?p2df

#readings #data #datasets #research #understandingdata #datadiscovery
На днях я копался в своих презентациях, часть я уже выкладывал, те что делались онлайн, а сотни их лежат на дисках и не все из них я часто повторял. На днях я выступал перед аудиторией которая, как и я, как и многие, задавалась вопросами о том что делать в ситуации когда официальная российская статистика превращается в тыкву становится бесполезной. И вот на эту тему я лет 7 назад делал презентацию "Альтернативные данные" как развитие направления сбора и поставки данных гораздо более оперативно чем любые официальные источники. По мере того как официальная статистика в РФ будет сжиматься эти альтернативные источники будут всё более важны.

Кстати, по многим малым и развивающимся странам ситуация похожая, но уже по бедности. Государство просто не создаёт многой статистики и иных датасетов и их приходится собирать из других источников. По Армении, например, многие данные которые мы собираем в Open Data Armenia создаются не внутри страны.

А один из наиболее интересных проектов в области альтернативных данных - это Nasdaq Data Link (ранее Quandl). Торговая площадка для данных. Главное тут помнить что продав данные кому-то одному, другие не лишаются такой возможности. Данные не нефть, а электричество.

#opendata #alternativedata #datasource #datadiscovery
Написал краткий обзор новых возможностей [1] в Dateno, включая открытую статистику, расширенный поисковый индексы, фасеты и API.

Лонгриды буду и далее разворачивать на Substack на русском языке, а на английском языке на Medium [2]

Ссылки:
[1] https://open.substack.com/pub/begtin/p/dateno?r=7f8e7&utm_campaign=post&utm_medium=web&showWelcomeOnShare=true
[2] https://medium.com/@ibegtin/just-recently-we-updated-our-dateno-dataset-search-dateno-io-065276450829

#opendata #datasearch #dateno #datadiscovery
Знаете ли Вы что... DBPedia - это не только цельная база данных, но и большой каталог наборов данных созданных на её основе. Все они собраны на портале databus.dbpedia.org [1], например, в виде коллекции дата файлов извлеченных из последней итерации обработчика Википедии.

Хотя лично у меня до сих пор немало сомнений насколько концепции Semantic Web И Linked Data приживутся за пределами научного мира, но что точно способствует их популяризации так это доступность больших наборов данных. А в DBPedia Databus определённо данных много. Это немалый, хотя и малоизвестный каталог открытых данных.

Ссылки:
[1] https://databus.dbpedia.org
[2] https://databus.dbpedia.org/dbpedia/collections/latest-core

#opendata #datasets #datadiscovery
Есть задачи для которых LLM совсем не годятся, а есть те которые годятся очень даже. Например, есть довольно узкая, но очень частая задача автоматического документирования данных.

У меня есть набор запросов к LLM на которых я это тестирую автодокументирование наборов данных. На полях/колонках которые содержат слова позволяющие по смыслу понять что там LLM выдает очень вменяемые ответы.

Это сколько же инструментов надо теперь переделать чтобы повысить их эффективность😂

В рамках экспериментов с Dateno у меня где-то несколько сотен тысяч схем CSV файлов которые можно превратить во что-то что было бы чем-то большим чем просто схема. В документацию.

#opendata #thoughts #datadiscovery #dataengineering #dataquality #datadocumentation
Forwarded from Dateno
Global stats just got a major upgrade at Dateno!

We’ve updated time series from the World Bank (DataBank) and International Labour Organization (ILOSTAT) — now available in a more powerful and usable format.

📊 What’s new?
19,000+ indicators across economics, employment, trade, health & more
3.85 million time series with clean structure and rich metadata
Support for multiple export formats: CSV, Excel, JSON, Stata, Parquet, and more
Fully documented schemas and all source metadata included
We’re not just expanding our data coverage — we’re raising the bar for how usable and reliable open statistical data can be.

And there’s more coming:
📡 New sources of global indicators
🧠 Improved dataset descriptions
🧩 A specialized API for working with time series in extended formats
Have a specific use case for international statistics? We’d love to hear from you → [email protected]

🔍 Try it now: https://dateno.io

#openData #datadiscovery #statistics #dataengineering #dateno #worldbank #ILOSTAT
Я совсем недавно писал про реестр каталогов Dateno и о применении ИИ к его обогащению. Сейчас могу сказать что реестр существенно обновился, его можно увидеть там же на dateno.io/registry и теперь почти у всех записей там есть сведения о наименовании каталога, его описанию, тематикам, а также у каталогов региональных властей и городов есть геопривязка на уровне кода ISO 3166-2 (субрегионы) по классификации ISO и ещё многое другое. Всё остальное можно постепенно или быстро доделать вручную

Реестр можно всегда посмотреть как датасет в JSONl и Parquet форматах

Хорошая новость - облачные ИИ агенты, с некоторыми плясками с бубном, хорошо справляются с нахождением разных метаданных связанных с сайтами.

А вот то с чем ИИ агенты справляются пока что посредственно - это то что можно отнести к data discovery. Например, откуда я первоначально находил порталы открытых данных? Через анализ сотен миллионов ссылок в Common Crawl где порталы с данными, геопорталы и тд. находились по определённым шаблонам ссылок, типа если в ссылке есть /rest/services то это скорее всего ArcGIS REST Services. А если /geoserver/web то экземпляр GeoServer и так далее. Таких типовых шаблонов пара десятков и вместе с автоматизированным ПО по идентификации API выявлялось довольно много всего.

Плюс к этому подборки списков сайтов на сайтах их разработчиков, плюс каталоги источников, например, научных репозиториев и так далее.

Всё это значительно глубже чем то куда заглядывают облачные ИИ. Уж очень специализированная задача, сама по себе. Кроме того многие реальные сервера с данными скрыты за интерфейсами, например, публичных геопорталов.

Но есть и другая сторона, тот же ChatGPT выдаёт очень неплохие результаты с идентификацией некоторых геопорталов и каталогов данных которых в реестре Dateno пока что нет. Пример, с каталогами данных и геопорталами Армении. Кстати ChatGPT 3o для таких задач оказывается пока эффективнее всего. Claude сильно галлюцинирует, а Gemini 2.5 даёт быстрые, но ограниченные результаты.

Важно помнить что почти все ИИ агенты используют сам Dateno как источник и существенная часть результатов повторяется с тем что у нас есть в реестре. Но не на 100% поэтому результат имеет ценность.

#dateno #ai #dataanalysis #datadiscovery