Ivan Begtin
8.03K subscribers
1.94K photos
3 videos
102 files
4.65K links
I write about Open Data, Data Engineering, Government, Privacy, Digital Preservation and other gov related and tech stuff.

Founder of Dateno https://dateno.io

Telegram @ibegtin
Facebook - https://facebook.com/ibegtin
Secure contacts [email protected]
Download Telegram
Тем временем Amazon анонсировали S3 Tables [1], возможность работать с данными таблиц которые хранятся в S3, но работа с ними как с дата файлами и через SQL запросы. Внутри этого всего движок поддерживающий Apache Iceberg, относительно новый открытый формат хранения и распространения таблиц внутри которого файлы Parquet и ассоциированные с ними метаданныею

Много где пишут что такой продукт может подорвать бизнес крупнейших игроков рынка облачной дата аналитики и хранения Databricks и Snowflake [2], цена, как и у всех AWS продуктов, будет сложная, но похоже что честная за такой сервис.

Правда, по личному опыту могу сказать что использование облачных сервисов Amazon это удобно, но всегда влетает в копеечку. На эту тему бесконечное число мемов и даже стартапы есть оптимизирующие облачное использование.

Ссылки:
[1] https://aws.amazon.com/ru/blogs/aws/new-amazon-s3-tables-storage-optimized-for-analytics-workloads/
[2] https://meltware.com/2024/12/04/s3-tables.html

#opensource #dataengineering #amazon #aws
Полезные ссылки про данные, технологии и не только:
- The DuckDB Avro Extension [1] новое расширение для DuckDB для поддержки формата файлов Apache Avro. Не то чтобы Avro часто встречается в дикой природе, но во многих корпоративных стеках данных он есть и хорошо что к нему есть расширение. Заодно полезное чтение про внутреннее устройство и специфику этого формата.
- Prototype Fund: a successful story of project replication within the Open Knowledge Network [2] в блоке Open Knowledge Foundation видео с рассказом про Prototype Fund в Германии и Швейцарии. Это специальный фонд для поддержки проектов с открытым кодом, про открытые данные и вообще про технологические аспекты открытости (например, стандарты) в контексте цифровой общей инфраструктуры. Иначе говоря поддержка открытых проектов создаваемых для общественного блага. Жаль этот опыт трудновоспроизводим.
- The History of the Decline and Fall of In-Memory Database Systems [3] приятный текст про "взлет и падение" баз данных работавших только в памяти и о том почему почти все СУБД вернулись к модели постоянного хранения. Спойлер: потому что цены гигабайт на SSD падают быстрее чем цены за гигабайт RAM
- Researchers achieve 96% accuracy in detecting phishing emails with open-source AI [4] вот полезное применение LLM, ловить фишинговые письма. Правда, сдаётся мне что есть способы и попроще, но и этот весьма неплох. Причём 95% точности достигается довольно легковесной моделью, а 96% уже с существенно большими требованиями
- An Open Source Python Library for Anonymizing Sensitive Data [5] статья об анонимизации данных и открытой библиотеке авторов о том как ей пользоваться.

Ссылки:
[1] https://duckdb.org/2024/12/09/duckdb-avro-extension
[2] https://blog.okfn.org/2024/12/05/prototype-fund-a-successful-story-of-project-replication-within-the-open-knowledge-network/
[3] https://cedardb.com/blog/in_memory_dbms/
[4] https://the-decoder.com/researchers-achieve-96-accuracy-in-detecting-phishing-emails-with-open-source-ai/
[5] https://www.nature.com/articles/s41597-024-04019-z

#opensource #ai #rdbms #readings
Для тех кто работает с архивами сайтов в формате WARC свежий инструмент WARC-GPT [1] по исследованию содержимого WARC файлов с использованием большой языковой модели (ИИ).

С открытым кодом [2] и примерами. Для проверки можно взять их тестовый датасет, скачать из Руархива (ruarxive.org) или создать самостоятельно с помощью wget или wpull.

Ссылки:
[1] https://lil.law.harvard.edu/blog/2024/02/12/warc-gpt-an-open-source-tool-for-exploring-web-archives-with-ai/
[2] https://github.com/harvard-lil/warc-gpt

#opensource #digitalpreservation #ai #webarchives
Для настоящих фанатов работы с командной строкой переосмысление работы с оболочками/терминалами в виде Wave Terminal [1] проекта с открытым кодом для который, с одной стороны даёт возможность работать с несколькими сессиями командной строки, а с другой позволяет организовывать пространство в виде виджетов. Сейчас эти виджеты включают:
- окно терминала
- системная информация по нагрузке памяти и CPU в реальном времени
- папки с файлами
- диалоговое окно с чатботом
- окно браузера

Для Windows прозрачная интеграция с WSL и дистанционным подключением к серверам, для других OS пока не пробовал.

Ко всему ещё и под открытой лицензией, в общем-то для тех кто живёт командной строкой не продукт, а мечта. Хотя я лично для W10 и W11 давно привык к Windows Terminal [2], но этот продукт может его потеснить потому что выглядит неплохо.

И, сразу понятно как создатели могут монетизировать такой продукт:
- виджеты для дистанционного подключения к Grafana, Prometheus, Datadog, Newrelic и тд.
- сервис взаимодействия с чат ботами через свои сервера с возможностью переключения на разные AI модели, собственно это уже проксируется через них для одной модели, просто пока денег за это не берут
- интеграция с дата инженерными платформами, базами данных и тд. где есть конвееры и нагрузка на ресурсы

При этом всё настраивается через файлы конфигурации и инструменты командной строки, организуется в рабочие пространства и можно создать рабочее пространство под конкретный проект, для работы, для работы с домашними устройствами и так далее.

Для дистанционной отладки продуктов и для операций DataOps и DevOps может быть весьма полезной прикладной штукой

Ссылки:
[1] https://github.com/wavetermdev/waveterm
[2] https://github.com/microsoft/terminal

#opensource #commandline
В рубрике интересных каталогов данных я ранее писал про WIS 2.0 движок от Всемирной метеорологической организации (WMO) по сбору стандартизированных данных о погоде [1]. Но это относительно новый продукт, ведь большое число стран интегрировано с системами WMO и без него. И делают они это, не все но многие, с помощью другого продукта который называется OpenWIS [2].

Это продукт с открытым кодом созданный в The OpenWIS Association AISBL через кооперацию более чем десятка стран.

На базе OpenWIS работают порталы с данными о погоде в России [3], Таиланде [4], Индонезии [5], Южной Корее [6] и многих других странах.

Внутри OpenWIS форк продукта Geonetwork, специализированного каталога метаданных используемого для публикации и поиска по пространственным данным. Поскольку у Geonetwork много открытых API и интерфейсов то к этим порталам можно подключится даже когда их веб интерфейсы закрыты паролями. Например, у российской инсталляции OpenWIS открытое API по стандарту OAI-PMH [7] и, скорее всего и другие тоже есть.

Код OpenWIS не развивается уже несколько лет, явно постепенно метеорологические агентства будут переходить на WIS 2.0 и на другие решения, тем не менее эти порталы это тоже каталоги данных. В реестре каталогов Dateno их пока нет, кроме портала OpenWIS в Таиланде, который был идентифицирован как экземпляр Geonetwork хотя, правильнее всё же будет определять OpenWIS как отдельный тип каталогов данных.

С одной стороны данных в этих каталогах данных немного, сотни слоёв карт, максимум, а с другой стороны их сбор не требует сверхусилий и рано или поздно они появятся в поиске Dateno.

Ссылки:
[1] https://t.iss.one/begtin/5972
[2] https://github.com/OpenWIS/openwis
[3] https://meta.gisc-msk.wis.mecom.ru/openwis-portal/srv/en/main.home
[4] https://wis.tmd.go.th/openwis-user-portal/srv/en/main.home
[5] https://wis.bmkg.go.id/openwis-user-portal/srv/en/about.home
[6] https://dcpc.nmsc.kma.go.kr/openwis-user-portal/srv/en/main.home
[7] https://meta.gisc-msk.wis.mecom.ru/openwis-portal/srv/en/oaipmh?verb=Identify

#opendata #datacatalogs #data #meteorology #opensource
Вал сообщений о багах сгенерированных AI

Статья Open source maintainers are drowning in junk bug reports written by AI [1] о том как разработчиков Python и Curl заваливают низкокачественными сообщениями о багах найденных AI ботами. Ситуация неприятная потому что может сильно демотивировать профессионалов контрибьюторов в открытый код.

Лично я с этим пока не столкнулся, но подозреваю что такой день ещё настанет.
И это далеко не единственное потенциально вредное применение ИИ.

Я подозреваю что очень скоро ИИ начнут использовать и для симуляции портфолио на Github'е и ещё много чего другого.

Бойтесь LLM проникающего в процесс разработки. Это не только low-code инструменты, но и немало трэша который к нам приходит.

Ссылки:
[1] https://www.theregister.com/2024/12/10/ai_slop_bug_reports/

#opensource #ai
Подборка чтения про данные, технологии и не только:

- SOAR - крупнейший в мире атлас, каталог и архив карт, привязанных к карте мира. Более 712 тысяч карт по десяткам тематик, особенно интересны исторические карты, на мой взгляд. Поиск скорее неудобный, а вот отображение на карте мира очень неплохо [1]

- Open Science rewarded: Four Projects to receive the National Prize for Open Research Data [2] в Швейцарии есть премия Open Research Data (ORD) которой ежегодно награждаются исследователи делающие проекты и помогающие публиковать и развивать среду открытых исследовательских данных. Среди победителей такой проект как Pathoplexus [3] онлайн сервис и база данных человеческих патогенов включая геномные данные. Открытый код и открытые данные вместе. Проекты других победителей не менее интересны.

- OpenUK New Year Honours List [4] список персон отмеченных за вклад в открытый код и в открытые данные в Великобритании. Ежегодно публикуется НКО OpenUK одна из важных особенностей которой в том что финансируется она не госгрантами, а корпоративными спонсорами: Google, Github, Microsoft, Arm, Red Hat и другими.

- Web Almanac 2024 [5] ежегодный доклад о состоянии веба от HTTP Archive создан по итогам анализа 16.9М сайтов и 83ТБ данных, описан в 19 разделах включая разделы про структурированные данные, размеры веб страниц, шрифты, изображения, разметка и многое другое.

- What happens with legislative initiatives in the committees? [6] дата-сторителлинг в Парламенте Австрии с визуализацией законодательных инициатив, на немецком, но поддаётся автопереводу. К публикации приложены данные и код на языке R.

Ссылки:
[1] https://soar.earth/
[2] https://akademien-schweiz.ch/en/medien/press-releases/2024/offene-wissenschaft-ausgezeichnet-vier-projekte-erhalten-den-nationalen-preis-fur-offene-forschungsdaten/
[3] https://pathoplexus.org/
[4] https://openuk.uk/honours/
[5] https://almanac.httparchive.org/en/2024/
[6] https://www.parlament.gv.at/recherchieren/open-data/showcases/Was-passiert-mit-Gesetzesinitiativen-in-den-Ausschuessen

#opendata #opensource #openaccess #readings #geo #spatial
В рубрике как это устроено у них платформа ioChem-DB [1] каталог данных в области вычислительной химии и материаловедения, не сомневаюсь что большинство химиков работающих с химическими формулами с ним сталкивались.

Его особенность в том что это по-факту:
- специальный набор инструментов по подготовке и преобразованию данных
- модель данных для описания данных
- платформа на базе DSpace для публикации данных в первичном и в преобразованных форматах.

Основной сайт агрегирует данные собранные из других порталов.

Большая часть данных публикуется в форматах Chemical Markup Language (CML) [2] и под свободными лицензиями.

Важная особенность в том что названия и описания этих наборов данных могут быть крайне минималистичны и состоять только из какого-нибудь кода, например 000112758 [3]

Поэтому я лично не знаю как химики используют там поиск и не могу сказать что понимаю как добавлять такие данные в Dateno [4] потому что хоть это и датасеты, но кто сможет найти их с таким-то описанием?

Ссылки:
[1] https://www.iochem-bd.org
[2] https://www.xml-cml.org
[3] https://iochem-bd.bsc.es/browse/handle/100/87916
[4] https://dateno.io

#opendata #chemistry #opensource #datasets #dateno
Teable [1] опенсорс продукт и онлайн сервис по созданию интерфейса а ля Airtable поверх баз Postgresql и Sqlite.

Для тех кто ранее сталкивался с Airtable и редактировал онлайн свои таблицы - это более чем идеальная замена. Если Airtable ушли по пути стремительной монетизации и превращения онлайн таблиц в конструкторы приложений, то тут продукт куда более близкий к изначальной идее таблиц онлайн. Фактически это онлайн замена MS Access, но, и это важно, поверх классической СУБД. А то есть данные можно править и вручную и автоматизировано.

Я теста ради загрузил одну из наиболее крупных таблиц из Airtable что у меня были, это таблица российских госдоменов для проекта @ruarxive (Национальный цифровой архив) и работает сервис прекрасно.

Ещё одна важная его особенность - это его можно разворачивать локально и работать со своими данным на собственном экземпляре продукта.

Ну а также они в бета режиме сейчас предоставляют сам сервис онлайн бесплатно, но монетизацию рано или поздно введут, так что open source выглядит интереснее.

Ссылки:
[1] https://teable.io

#opensource #datasets #datatools
В рубрике интересных проектов по работе с данными LOTUS: A semantic query engine for fast and easy LLM-powered data processing [1] движок для обработки данных с помощью LLM поверх Pandas. Принимает на вход человеческим языком описанные конструкции, переводит их в программные операции над датафреймом.

Является демонстрацией работы из научной работы Semantic Operators: A Declarative Model for Rich, AI-based Analytics Over Text Data [2].

Выглядит весьма интересно как задумка и как реализация, вполне можно рассматривать как внутренний движок поверх которого можно сделать обёртку, как для манипуляции данными в командной строке, так и хоть с подключением голосового ассистента.

Если ещё и Pandas заменить на Polars или иную drop-in альтернативу, то ещё и обработка данных приобретёт хорошую скорость и производительность.

Я лично вижу одним из трендов ближайшего года появление всё большего числа инструментов для обработки данных с LLM внутри.

Ссылки:
[1] https://github.com/guestrin-lab/lotus
[2] https://arxiv.org/abs/2407.11418

#opensource #datatools #dataengineering #data #ai #llm
Оказывается в декабре команда OpenRefine [1], инструмента по ручной очистке данных, опубликовала результаты опроса пользователей о том к какой группе те себя относят, как пользуются и так далее.

И по группам результаты даже чуть удивительные.
Основные пользователи (38%) - это исследователи, а вот следом за ними следующие - это библиотекари.
Далее идут по сообществам:
- Data Science
- Wikimedian
- GLAM

И где-то там же ещё и дата журналисты, digital humanities и тд.

По сути это инструмент как раз для обработки данных в гуманитарных профессиях, относительно небольшого объёма, но с прицелом на работу со связанными данными, Wikipedia/Wikimedia и так далее.

Подозреваю что и Data Science там тоже в контексте не корпоративных, а исследовательских данных.

Кстати, в дата инженерии и корпоративной дата аналитики он почти не применяется. Всё это про разницу в стеках инструментов работы с данными, их достаточно давно можно нарезать группами по областям применения.

Например, дата журналистам или историкам OpenRefine полезен, аналитиков логичнее учить делать то же самое с помощью дата фреймов, дата инженеров с помощью конвееров данных и так далее.

А сам OpenRefine хороший инструмент, но упершийся в жёсткие ограничения внутреннего движка. Если бы я не был так увлечен Dateno я бы всерьёз озадачился созданием UI похожего на OpenRefine, но на движке DuckDB или Polars.

Ссылки:
[1] https://openrefine.org
[2] https://openrefine.org/blog/2024/12/20/2024-survey-results

#opendata #opensource #datatools
Продолжая рассуждения про OpenRefine, я какое-то время довольно быстро сделал движок mongorefine [1] в котором воспроизвёл некоторые ключевые функции OpenRefine в в виде библиотеки поверх MongoDB. Но после тестов выяснилось что хотя это и очень гибкая штука, но безбожно медленная.

К сравнению DuckDB или Polars не такие гибкие, зато работают с данными значительно большего объёма на десктопе.

У OpenRefine есть две ключевые фичи которые наиболее трудоёмки:
1. История всех изменений датасета. Это не так сложно как может показаться, но на большом датасете начинает кушать много дискового пространства.
2. UI для пользователя. Без UI, в виде библиотеки - эта задача проста. С UI - это становится не так просто. Вот я, например, нужными навыками для создания таких сложных пользовательских интерфейсов не обладаю.

Остальные фичи касаются интеграции с внешними сервисами, Wikidata и тд. Тут важнее интерфейс для плагинов, а не сразу сами плагины.

Я для такого рисовал схемку как можно было бы организовать правильно, но, пока забросил эту идею.

#opensource #datatools #thoughts
В рубрике полезного чтения про данные, технологии и не только:
- The Unique Challenges of Open Data Projects: Lessons From Overture Maps Foundation [1] в блоге Linux Foundation об отличиях работы с открытыми данными и открытым кодом на примере Overture Maps. Написано так словно авторы переоценили свой опыт с открытым кодом применительно к открытым данным, какие-то тезисы кажутся очень очевидными для тех кто в теме давно, что не отменяет их актуальности, конечно.

- La France classée première européenne en matière d'open data pour la 4e année consécutive [2] текущее состояние открытых данных во Франции за 2024 год, на французском, но всё понятно и автопереводчики есть. Если кратко: а) Франция лидер в отчете Open Data Maturity. б) Приоритет на данных особой ценности. в) Приоритет на вовлечении сообщества.

- The State of Open Data 2024: Special Report [3] доклад от Digital Science про состояние открытых исследовательских данных (публикуемых на их платформе, конечно, и ряда других источников). Полезно для общего понимания трендов в этой области, с поправкой на то что они коммерческий провайдер исследовательской инфраструктуры.

- Datos Abiertos de los Registradores de España [4] свежезапущенный каталог открытых данных испанских регистраторов, по сути статистика по банкротствам, покупкам жилья и так далее. Много полезных индикаторов оформленных как открытые данные.

- Wspolna platforma kartografee geologicznej (WPKG) [5] недавно открытая картографическая платформа геологической службы Польши. Помимо большого числа слоёв ещё и публикуют 3D модель геологической структуры территории Польши которая выглядит весьма и весьма неплохо. Открытое API явным образом не обозначено, но внутри всё на базе ArcGIS сервера к которому можно подключиться онлайн без труда.

- qcsv pro [6] коммерческий продукт для обработки данных и публикации на порталах открытых данных на базе CKAN. Смотрю на него критическим взглядом. С одной стороны он не дотягивает до OpenRefine по функциональности обработки и очистки данных, с другой ограничения бесплатной версии в 1000 строк CSV это ну как бы его сильно обесценивает, а с третьей он жёстко ограничен экосистемой CKAN. Есть ощущение что экономика не должна сходится, но вот бизнес модель такую можно зафиксировать. Будет ли она успешной? Посмотрим.

- Open Data Editor [7] некоммерческий редактор открытых данных с открытым данным и возможностью с публикации данных в CKAN и Zenodo. По сути это открытый конкурент qsv pro, и я о нём ранее упоминал. Полезен всем кто готовит небольшие данные для публикации, к сожалению, не годится когда данные не совсем маленькие, например, от 500MB.

- Most violent or sexual offences went unsolved in crime hotspots in England and Wales last year [8] статья в The Guardian о том что раскрывается лишь 11% преступлений сексуального характера в Великобритании раскрывается. И даже важнее то что есть территории где раскрываемость сильно ниже чем по стране, отчасти из-за качества данных, а отчасти это отражает реальную ситуацию. Важно что в Великобритании принципиально возможен такой анализ поскольку полиция раскрывает данные до муниципального уровня на специальном сайте data.police.uk

Ссылки:
[1] https://www.linuxfoundation.org/blog/the-unique-challenges-of-open-data-projects-lessons-from-overture-maps-foundation
[2] https://www.data.gouv.fr/fr/posts/la-france-classee-premiere-europeenne-en-matiere-dopen-data-pour-la-4e-annee-consecutive/
[3] https://www.digital-science.com/state-of-open-data-report-2024/
[4] https://www.registradores.org/-/el-colegio-de-registradores-presenta-la-plataforma-open-data-que-ofrece-información-pública-para-su-consulta-de-forma-libre-y-gratuita
[5] https://geologia.pgi.gov.pl/mapy/
[6] https://qsvpro.dathere.com/
[7] https://opendataeditor.okfn.org/
[8] https://www.theguardian.com/uk-news/2025/jan/13/most-violent-or-sexual-offences-went-unsolved-in-uk-hotspots-last-year

#opendata #uk #poland #geodata #opensource
В ближайшие дни я в Москве и довольно неожиданно, а на самом деле давно были планы, читаю лекцию про работу с большими исследовательскими датасетами и об использовании DuckDB и Parquet в этих целях. Будет и в части теории и рассказа про современный инструменты и в части демонстрации на живых данных. Для тех исследователей кто хотя бы немного владеет Python, R и/ли SQL всё будет довольно понятно.

А вот и сам анонс;)

Приглашаем поучаствовать в семинаре на тему особенностей работы с современными форматами больших данных.

Поговорим о ключевых преимуществах формата Parquet для оптимизации хранения и обработки данных, а также о возможностях аналитической СУБД DuckDB.

Семинар может быть интересен тем, кто занимается обработкой и анализом больших данных, а также тем, кто ищет эффективные и производительные решения для работы с массивами данных в современных аналитических экосистемах.

Дата проведения: 21 января 2025 г. (вторник), с 16:30 до 18:00
Формат: гибридный
Место проведения: Институт востоковедения РАН (г. Москва, ул. Рождественка, 12), аудитория 222

Регистрация: https://ivran.ru/registraciya-na-seminar

#opendata #opensource #lectures #teaching
Подборка полезных ссылок инструментов с открытым кодом:
- pyper [1] библиотека для Python для параллельной обработки данных, упрощает работу с потоками, делает её значительно проще.

- Gemini-search [2] альтернатива для Perplexity на базе LLM модели Gemini от Google. Плюс: хостится локально. Минус: за обращения к API Гугла надо платить. Мне не удалось её заставить работать, но демо выглядит интересно, надеюсь скоро будет работоспособнее

- Automatisch [3] open source аналог Zapier, используется для интеграции и автоматизации разных онлайн сервисов типа Twitter, Spotify, Google Docs и др. Сервисов таких много, но тут открытый код.

- crawl4ai [4] веб краулер с построением конвееров для обработки страниц для LLM и не только. Мне вот есть куда прикрутить краулер, может быть даже именно этот. А вообще удивительно насколько стремительно становятся популярными именно AI-powered инструменты. К примеру, похожий краулер Browsertrix для веб архивации имеет всего 223 лайка. А у crawl4ai сразу 25 тысяч лайков. Разница, реально, на 2 порядка и интенсивность разработки аналогично.

- PDFMathTranslate [5] open source инструмент перевода научных статей на другие языки, с сохранением всех формул, изображений и тд. Поддерживает все актуальные разговорные языки используемые в науке: английский, китайский, французский, немецкий, русский, испанский и тд. Существует в виде онлайн сервиса с ограничением в менее чем 5MB [6] или можно скачать и развернуть у себя

Ссылки:
[1] https://github.com/pyper-dev/pyper
[2] https://github.com/ammaarreshi/Gemini-Search
[3] https://github.com/automatisch/automatisch
[4] https://github.com/unclecode/crawl4ai
[5] https://github.com/Byaidu/PDFMathTranslate
[6] https://pdf2zh.com/

#opensource #datatools #ai #crawlers #search
По итогам вчерашней лекции зафиксирую ключевые тезисы о которых я пишу тут давно, но фрагментировано:

1. Формат Apache Parquet позволяет публиковать текущие крупные датасеты в виде пригодном для немедленной работы аналитиков, меньшего объёма и с лучшей структурой (типизацией содержимого). Это уже давний стандартизированный формат публикации данных пришедший из стека Apache и набравший популярность по мере роста популярности data science.

2. Apache Parquet не единственный такой формат, но один из наиболее популярных в последнее время. Он поддерживается почти всеми современными аналитическими инструментами работы с дата фреймами и аналитическими базами данных. Кроме него есть ещё и такие форматы публикации как ORC, Avro, значительно менее популярные, пока что.

3. В формате Apache Parquet уже публикуются данные раскрываемые госорганами. Его использует статслужба Малайзии, Правительство Франции, разработчики порталов открытых данных OpenDataSoft и многочисленные исследователи по всему миру. Почему они так делают? Потому что получают запрос от аналитиков, потому что это снижает стоимость хранения и обработки данных.

4. DuckDB - это один из наиболее ярких примеров стремительного удешевления работы с данными большого объёма на настольных компьютерах. Значимость его как инструмента именно в том что появляется возможность работы с данными условно в сотни гигабайт на недорогих устройствах. Например, работа с данными в сотни гигабайт на железе стоимостью до $1000.

5. Производительность DuckDB стремительно растёт. Рост от 3 до 25 раз для разных запросов и поддержка данных до 10 раз большего размера и это за 3 года с 2022 по 2024. Поэтому, хотя у DuckDB есть альтернативы - chDB, движки для дата фреймов такие как Polars, но важен потенциал развития.

6. Почему это важно для исследователей? У рядовых исследовательских команд не всегда есть возможность развертывания "тяжёлой инфраструктуры" или привлекать профессиональных дата аналитиков и дата инженеров. Чаще приходится работать на десктопах и не самых дорогих.

7. Почему это важно при публикации данных? Рассмотрим случай когда госорган, в нашем случае, Минкультуры РФ публикует каталог музейного фонда у себя на портале открытых данных. Сейчас это 11GB ZIP файл, разворачивающийся в 78GB файл в формате JSONS (на самом деле это NDJSON/JSON lines, из построчных записей в JSON). С этими данными всё ещё можно работать на десктопе, но пока скачаешь, пока распакуешь, это будет трудоёмко. Если бы Министерство сразу публиковало бы этот и другие датасеты в Parquet, то итоговый размер датасета был бы 2.7GB и работать с ним можно было бы немедленно, быстрее и удобнее.

8. Технологии дата инженерии и аналитики стремительно развиваются. Отстать можно очень быстро, например, многие только-только узнают про инструменты для дата фреймов вроде Pandas, а в то же время Pandas уже рассматривается как легаси потому что Pandas почти перестал развиваться, а заменяющие его движки Polars или Dask показывают значительно лучшую производительность.

9. Высокая конкуренция среди команд разработчиков СУБД. За ней можно наблюдать, например, через рейтинги производительности ClickBench где если не все то большая часть аналитических СУБД и через каталог СУБД в мире DBDB. Прямо сейчас происходящее называют золотым веком баз данных [и дата инженерии]. Причём развитие идёт в сторону повышения производительности на текущем оборудовании. А это значит что в ближайшем будущем будет ещё больший прогресс в том чтобы работать с данными большого объёма на недорогом оборудовании.

#opendata #opensource #datatools #data
Полезное чтение про данные, технологии и не только:
- TPC-H SF300 on a Raspberry Pi [1] бенчмарк TPC-H SF300 для DuckDB на Raspberri Pi с 16 GB RAM и 1TB SSD. TPC-H тест на двух базах в 26GB и 78GB. Самое главное, все стоимость всего всего этого железа $281.
- BuzzHouse: Bridging the database fuzzing gap for testing ClickHouse [2] в блоге ClickHouse об автоматизации тестирования запросов к ClickHouse. Автор создал и оформил 100+ issues выявленных таким автоматическим тестированием.
- Öppna data-portalen [3] портал открытых данных Шведского национального совета по культурному наследию. Все они геоданные в открытых форматах для возможности нанесения на карту.
- Pilot NIH Science of Science Scholars Program [4] национальный институт здравоохранения США запустил программу для исследователей по работе с их внутренними данными. Это те данные которые не могут быть открыты, но доступны с соблюдением требований безопасности, приватности, с оборудования предоставленного государством и тд. Ограничений немало, но и данные из тех что относят к особо чувствительным.
- LINDAS [5] официальный государственный портал связанных данных (Linked Data) Швейцарии. Создан и поддерживается Швейцарскими Федеральными Архивами. Включает 133 набора данных/базы данных
- Visualize Swiss Open Government Data [6] Швейцарская государственная платформа для визуализации данных. Да, по сути это как если бы к Datawrapper прикрутили каталог данных и придали бы всему государственный статус. Наборов данных там около 200 и, самое главное, всё с открытым кодом [6]

Ссылки:
[1] https://duckdb.org/2025/01/17/raspberryi-pi-tpch.html
[2] https://clickhouse.com/blog/buzzhouse-bridging-the-database-fuzzing-gap-for-testing-clickhouse
[3] https://www.raa.se/hitta-information/oppna-data/oppna-data-portal/
[4] https://dpcpsi.nih.gov/oepr/pilot-nih-science-science-scholars-program
[5] https://lindas.admin.ch/
[6] https://github.com/visualize-admin

#opendata #opensource #data #rdmbs #datatools
Свежий интересный продукт по контролю качества данных DQX - Data Quality Framework от Databricks Labs [1].

Плюсы:
- зрелость поскольку Databricks один из лидеров рынка дата инженерии
- хорошая документация, судя по первому взгляду
- декларативное описание тестов в YAML (тут очень субъективно)
- интегрированность и заточенность на работу с Apache Spark
- открытый код на Github

Минусы:
- зависимость от Databricks Workspace в их дата каталоге Unity
- код открыт но лицензия несвободная, а специальная Databricks License с ограничениями [2], вполне возможно внешних контрибьюторов это оттолкнёт

Он очень напоминает движок Soda [3] который тоже даёт возможность декларативного описания тестов, но ещё более заточенный на их облачный сервис и который бесплатен только в рамках 45 дней тестирования. Можно пользоваться из Soda Core, правда, который под лицензией Apache 2.0

Итоговая ситуация такова что из частично открытых остались только движки Soda и great_expectations [4] который также стремительно коммерциализируется, но вроде как его команда обещала сохранить продукт GX Core под лицензией Apache 2.0 и развивать его, но как бы не закончилось также как с Elasticsearch и MongoDB, со сменой лицензии или тем что новые ключевые возможности будут только в облачных сервисах.

А DQX продукт интересный, но хотелось бы то же самое, но без вот этого вот всего (с).

Итого я могу сказать что есть заметный дефицит инструментов контроля качества данных. Сейчас нет ни одного подобного продукта под лицензией MIT, с простой интеграцией и, желательно, декларативным описанием тестов.

Поляна инструментов контроля качества данных совершенно точно заполнена не до конца и "рулят" на нём продукты в гибридном состоянии открытого кода и SaaS платформ.

Ссылки:
[1] https://databrickslabs.github.io/dqx/
[2] https://github.com/databrickslabs/dqx?tab=License-1-ov-file#readme
[3] https://github.com/sodadata/soda-core
[4] https://github.com/great-expectations/great_expectations

#opensource #dataquality #datatools