Ivan Begtin
7.99K subscribers
1.88K photos
3 videos
101 files
4.58K links
I write about Open Data, Data Engineering, Government, Privacy, Digital Preservation and other gov related and tech stuff.

Founder of Dateno https://dateno.io

Telegram @ibegtin
Facebook - https://facebook.com/ibegtin
Secure contacts [email protected]
Download Telegram
В Science вышла статья о "фабрике публикаций" [1], компании International Publisher, предлагающей учёным становится соавторами научных публикаций за деньги. В статье упоминается также происхождение сайта, его руководителя и сам сайт с таким предложением. Исследователь, Анна Абалкина провелֆ детальный анализ связываясь с учёными, компанией, представителями научных журналов и, собственно, итоги этого исследования/расследования запечатлены в статье в Science.

Ранее другая команда проводила похожий анализ [2] в отношении этого же сайта и компании и собрала большой набор данных [3], как раз для тех кто интересуется темой paper mills, такой набор данных будет интересен.

Ссылки:
[1] https://www.science.org/content/article/russian-website-peddles-authorships-linked-reputable-journals
[2] https://retractionwatch.com/2021/12/20/revealed-the-inner-workings-of-a-paper-mill/
[3] https://data.world/beperron/international-publisher

#dataset #science #data #research #investigations
В рубрике как это работает у них, в Канаде проект FRDR (Federated Research Data Repository) [1] централизованный репозиторий всех научных данных создаваемыми исследовательскими центрами в Канаде.

Появился он давно, ещё в 2016 году, но только в 2021 году перешёл в промышленное использование и поэтому объёмы его относительно невелики, около 77 тысяч наборов данных из 103 научных репозиториев [2]. По сравнению с европейскими проектами Zenodo и OpenAIRE - это немного, но для Канады с её 38 миллионным населением, вполне немало.

Из особенностей:
- по сути, выступает поисковиком данных для исследователей
- кроме научных репозиториев агрегируют данные с порталов открытых данных
- собирают данные канадских исследовательских центров из глобальных репозиториев вроде Dryad
- как и большая часть других публичных ресурсов в Канаде - двуязычен на английском и французском языках
- является частью большого проекта Цифровой научной инфраструктуры [3]

Всё это не так масштабно как европейские, китайские или австралийские проекты по открытому доступу именно к данным, но показательно с точки зрения рассмотрения открытых государственных данных с точки зрения повышения их находимости и использования исследователями.

Ссылки:
[1] https://www.frdr-dfdr.ca
[2] https://www.frdr-dfdr.ca/stats/en/
[3] https://ised-isde.canada.ca/site/digital-research-infrastructure/en

#opendata #canada #openaccess #casestudies #government #science
Рекомендую последние две публикации в канале Ивана Стерлигова про то что CrossRef перестаёт работать с российскими журналами и о последствиях этого шага [1] [2]. Последствия для российских научных организаций и учёных весьма неприятные, поскольку DOI выдают, в основном, два агентства в мире, это CrossRef и DataCite. CrossRef находится в США, DataCite в Германии, и там, и там будут соблюдать санкционные требования. Понятно что некоторые российские журналы будут напрямую публиковать все материалы на Zenodo, Arxive.org и ряде других, но если это будут журналы которые будут аффилированы так или иначе с научными учреждениями или лицами под санкциями, то, вопрос только времени, когда и некоммерческие проекты могут ввести свои ограничения в виду своей юрисдикции.

Это же к вопросу о наукометрии в России, которая во многом сейчас построена на открытых базах цитирования. Много ли будет толку от этих баз если измеримость научных публикаций будет сильно ограничена? Вопрос, этот, конечно, риторический.

Я, кстати, считаю что китайские сервисы выдачи DOI тут не помогут по одной простой причине. Китайские научные власти уже давно выстраивают партнерство с большинством зарубежных агрегаторов научных публикаций и создают собственную инфраструктуру. У них, например, есть свой аналог DOI, называется CSTR, Common Science and Technology Resource Identification [3]. Он используется не только для научных статей, но и для идентификации наборов данных, диссертаций, препринтов, патентов, инструментов, проектов, научных институтов и исследователей. Огромная база с открытым API и с интеграцией с Google Scholar, Semantic Scholar, CrossRef, ORCID и другими. В Китае есть проект Science Data Bank [4] для публикации открытых наборов научных данных, это китайский аналог Zenodo, так вот он интегрирован с десятками наукометрических проектов в США и в Европе. Проект уже интегрирован с OpenAIRE, Schoolix, Google Dataset Search, Data Citation Index, DataCite и другими. И это далеко не вся китайская научная инфраструктура, она, в принципе, весьма велика и интегрирована и интегрируется в мировую научную инфраструктуру очень тесно.

Будут ли китайские власти рисковать этим всем ради взаимодействия с российскими научными организациями? Лично я буду в этом сдержанно скептичен.

Ссылки:
[1] https://t.iss.one/science_policy/833
[2] https://t.iss.one/science_policy/834
[3] https://www.cstr.cn
[4] https://www.scidb.cn/en

#opendata #openaccess #openscience #science #china #crossref #sanctions
Я ранее писал про сервис ExplainPaper [1] который генерировал сжатое изложение научных статей понятным языком. С той поры сервис быстро коммерциализировался, так что, очень похоже, что услуга эта востребована, а с появлением ChatGPT, GPT-4 и других языковых моделей ещё не раз реинкарнирует.

Из свежих подобных продуктов стартап OpenRead [2]. Сервис автоматически генерирует краткое изложение, так называемое Paper Expresso и позволяет естественным языком задать вопросы по научной статье и получить развернутые ответы. Я проверил на нескольких статьях которые сам читаю, перечитываю, учитываю в своей работе и результаты вполне практичные. Я, правда, не считаю что такие сервисы должны быть сами по себе, гораздо естественнее они будут как часть платформ вроде Google Scholar, Semantic Scholar или Arxive.org и др.

Например, будучи подписанным на рассылки Semantic Scholar по нескольким научным темам могу сказать что главное неудобство в отсутствии кратких понятных аннотаций к статьям. Но это только самое очевидное применение, более интересные модели в уже более серьёзном применении ИИ с предобучением на научных статьях по направлениям, почти наверняка такие AI ассистенты появятся (уже появились?) в ближайшем будущем.

Ссылки։
[1] https://t.iss.one/begtin/4346
[2] https://www.openread.academy

#startups #ai #science #papers #readings
О том как развивается научная инфраструктура, на примере, Австралии где с 1 января 2023 года начался полугодовой проект Australian National Persistent Identifier (PID) Strategy and Roadmap [1] по разработке дорожной карты и стратегии внедрения постоянных идентификаторов (PID) ко всем результатам, процессам, объектам, субъектам и вообще всему значимому в научной деятельности.

Этому проекту предшествовал доклад Incentives to Invest in Identifiers [2] о том как сейчас постоянные идентификаторы используются австралийскими исследовательскими центрами и, если вкратце, то там сложилась уже весьма зрелая инфраструктура с использованием DOI (Crossref, Datacite), Handle, PURL, ORCID, RoR, RaiD, IGSN и ещё многих других идентификаторов.

В исследовании есть отсылка к тому что подобная же работа идёт в Великобритании.

Похожий системный подход к постоянным идентификаторам есть в Китае, где наряду с DOI используют свой национальный идентификатор CSTR, но китайский опыт, почему-то, австралийцы в исследовании не упоминают.

Почему это важно? Для анализа любых научных данных критично иметь возможность "связывать данные" многочисленных систем учёта и управления научной деятельностью. В публичном доступе используются открытые и коммерческие графы знаний которые построены на такой связности идентификаторы, в непубличном доступе есть возможность связывать с другими данными.

Что интересно в австралийской инициативе - это взгляд на весь этот процесс с точки зрения экономии времени исследователей и средств государства, и в докладе, и в стратегии закладывается финансово-экономическое обоснование всего проекта.

Ссылки։
[1] https://ardc.edu.au/project/australian-national-persistent-identifier-pid-strategy-and-roadmap/
[2] https://ardc.edu.au/resource/incentives-to-invest-in-identifiers-report/
[3] https://www.cstr.cn/en/

#openaccess #science #persistentidentifier #scientificifrastructure
Любопытный исследовательский проект ORKG [1] дословно The Open Research Knowledge Graph (ORKG) aims to describe research papers in a structured manner. With the ORKG, papers are easier to find and compare.

А в переводе на русский язык посвящённый структуризации научных публикаций. Обратите внимание, не упрощённое понятное понимание, а именно структуризация. Фактически - это перевод научной статьи в данные/граф знаний с привязкой к Wikidata. Делает его команда TIB – Leibniz Information Centre for Science and Technology которые под руководством Сорена Ауэра, команда которого когда-то создавала DbPedia. Фактически проект создаёт структурированную базу научных статей, задача эта очень непростая, но реалистичная и наукоёмкая.

Да, у них открытое API, точки подключения к SPARQL и много чего открытого.

Ссылки:
[1] https://orkg.org

#opendata #openapi #openscience #knowledge #science
В рубрике интересных наборов данных CloudDrift, a platform for accelerating research with Lagrangian climate data [1] - это программная библиотека для доступа к данным собираемым с 25 тысяч дрейфующих буев в рамках программы Global Drifter Program (GDP) [2] реализуемой Национальным управлением океанических и атмосферных исследований США. Сами данные размещены на серверах Amazon и доступны в их сервисе S3 [3].

Особенность Clouddrift в том к конкретным датасетам публикуется ещё и полноценная библиотека для доступа к ним и анализа с учётом специфики данных и контекста. Авторы не первые и не единственные кто так делает, для Python есть какое-то количество программных библиотек реализованных на том же принципе, когда данные доступны не только как файлы и API, но и сразу в виде DataFrame для Pandas или как XArray в данном случае.

Что характерно, этот проект один из десятков проектов данных и инструментов о Земле финансируемый Национальным научным фондом США в рамках сообщества и программы EarthCube [4]

Ссылки:
[1] https://cloud-drift.github.io/clouddrift/
[2] https://www.aoml.noaa.gov/phod/gdp/
[3] https://registry.opendata.aws/noaa-oar-hourly-gdp/
[4] https://www.earthcube.org/funded-projects

#opendata #opensource #science #usa #earthsciences #geodata
В рубрике интересных продуктов на данных SemOpenAlex [1] граф знаний на 26 миллиардов RDF triples с базой из более чем 249 миллионов научных работ от 135 миллионов авторов и из 226 тысяч источников.

Проект включает открытое API и возможность скачать дамп целиком [2].

Данные и API доступны под лицензией CC0 и имеют множество возможных применений во всём что касается картирования науки и научной деятельности.

Ссылки:
[1] https://semopenalex.org
[2] https://semopenalex.org/resource/?uri=http%3A%2F%2Fdatasets.metaphacts.com%2Fsemopenalex

#opendata #datasets #researchdata #science #semanticdata
Возвращаюсь из недельной командировки совмещённой с отпуском, надеюсь что читатели не заскучали по материалам про данные. И сразу же интересный свежий доклад The State of Open Data 2023 [1] от команды Digital Science, стартапа/компании предоставляющих Figshare и другие порталы и сервисы для открытой инфраструктуры для научных публикаций.

Доклад не про то что вы можете подумать публикуется на порталах открытых данных, а про то как исследователи публикуют свои данные. В каких дисциплинах чаще, с какой мотивацией, что они об этом думают, помогают ли им и так далее. Тем кто хочет знать как развивается открытость науки в головах исследователей - это полезный документ. Он составлен через опросы как и большая часть докладов жанра "The State of ...", и главный вывод который можно сделать в том что открытость данных в науке - это долговременный постепенно развивающийся и не останавливающийся тренд.

Ссылки:
[1] https://digitalscience.figshare.com/articles/report/The_State_of_Open_Data_2023/24428194

#opendata #openaccess #research #science
В рубрике как это устроено у них открытые научные данные в такой, далеко не всем известной научной дисциплине как материаловедение.

Как и ряд других дисциплин она активно сдвигается в сторону открытости науки и открытости исследовательских данных.

Вот пример, 4-х научных проектов:
- AFlow [1] - база из 3.5 миллионов компонентов материалов и более чем 734 миллионов их свойств, под Public Domain для научного использования
- OQDM [2] база рассчитанных термодинамических и структурных характеристик более чем 1.2 миллионов материалов. Под Creative Commons
- The Materials Project [3] база по более чем 320 тысячам молекулам и материалам, а также проекты по машинному обучению предсказания свойств материалов
- NOMADS [4] база из 13 миллионов записей о материалах, как теоретических, так и полученных из экспериментов

У всех проектов лицензии на распространение материалов или Creative Commons или Public Domain, есть API на получение и на загрузку данных. Их наборы данных и отдельные записи индексируются научными поисковиками и агрегаторами. Ко всем есть API, библиотеки на Python для автоматической работы с данными, открытый код и сформировавшаяся экосистема.

Общий объём раскрываемых данных измеряется в сотнях теребайт. Начиная с 100 GB в OQMD и до 119 TB в NOMAD.

Ссылки:
[1] https://aflowlib.org/
[2] https://oqmd.org/
[3] https://next-gen.materialsproject.org/
[4] https://nomad-lab.eu/nomad-lab/

#opendata #openaccess #openscience #science #research #materials #molecules