Читаю в Российской газете про идею создания научного дата-хаба [1] и думаю как это прокомментировать.
Начну с того что для его создания регулирования не нужно, необходимо лишь чтобы ключевые органы власти и ряд учреждений сдали бы туда данные и чтобы ими можно было пользоваться. Это вопрос не регулирования, а как принято говорить "политической воли" или, если угодно, "государственного насилия" в отношении государственных же структур не участвующих в обмене данными.
И поэтому, разговоры про регулирование стоит воспринимать как опасный звоночек потому что не имея возможность потребовать от госорганов и госкорпораций данные, пр-во начнет регулировать бизнес сдавать данные в этот дата хаб. Вот тут регулирование нужно в полный рост, но это уже плохая форма государственного принуждения, выгодная только ограниченному числу ИИ компаний и ряду госорганов.
Ссылки:
[1] https://rg.ru/2024/11/25/rossijskij-ii-obuchat-na-otechestvennyh-dannyh.html
#opendata #data #ai #regulation #russia
Начну с того что для его создания регулирования не нужно, необходимо лишь чтобы ключевые органы власти и ряд учреждений сдали бы туда данные и чтобы ими можно было пользоваться. Это вопрос не регулирования, а как принято говорить "политической воли" или, если угодно, "государственного насилия" в отношении государственных же структур не участвующих в обмене данными.
И поэтому, разговоры про регулирование стоит воспринимать как опасный звоночек потому что не имея возможность потребовать от госорганов и госкорпораций данные, пр-во начнет регулировать бизнес сдавать данные в этот дата хаб. Вот тут регулирование нужно в полный рост, но это уже плохая форма государственного принуждения, выгодная только ограниченному числу ИИ компаний и ряду госорганов.
Ссылки:
[1] https://rg.ru/2024/11/25/rossijskij-ii-obuchat-na-otechestvennyh-dannyh.html
#opendata #data #ai #regulation #russia
В качестве регулярных напоминаний о том что чем занимаюсь я лично и команды Инфокультуры, Dateno и Open Data Armenia.
Международное
- Dateno - глобальная поисковая система по данным, охватывает все страны мира и 19 миллионов датасетов. Большой-маленький международный стартап помогающий находить данные по всем возможным темам. А также с открытым кодом ряда компонентов в репозиториях commondataio и dateno и реестр каталогов данных Dateno registry
- Data Catalog Armenia - общественный каталог открытых данных по Армении, пока нет государственного единственный такой каталог данных в стране. Включая открытые репозитория кода сбора данных opendataam
Проекты в России/связанные с Россией
- Хаб открытых данных - общественный портал открытых данных со множеством датасетов. Из-за наплыва спамеров пришлось закрыть в нем свободную регистрацию, но всем желающим публиковать данные всегда можем дать такую возможность.
- Госзатраты - проект по сбору и публикации всех данных о государственных и муниципальных контрактах в РФ. Включая открытое API и открытые данные. Большие данные, за более чем 10 лет.
- Ruarxive - национальный цифровой архив России, архивы всех потенциально исчезающих сайтов госорганов, организаций, НКО и отдельных проектов. Постоянно не хватает ресурсов чтобы охватить всё что хочется, потому что исчезает всё постоянно.
- OpenNGO - база по всем некоммерческим организациям в России. По всем - это всем, не только социально ориентированным. Там есть и госНКО, и университеты и тд. Включает открытые данные и открытое API.
- Datacatalogs.ru - портал каталога каталогов данных который мы делали до Dateno и до реестра каталогов данных Dateno. Только российские ресурсы и стран постсоветского пространства, включает не только "чистые" каталоги данных, но и порталы открытого бюджета, к примеру, как то что каталогами данных не является, но могло бы быть.
- Plain Russian - сервис проверки русского языка на простоту. Скорее всего скоро будет неактуальным из-за развития LLM, тем не менее, он существует, работает, полезен.
P.S. А также есть многие проекты которые ещё в работе, или подвисли, или требуют актуализации, или представленные только в виде документов или открытого кода, о них в следующий раз
#opendata #data
Международное
- Dateno - глобальная поисковая система по данным, охватывает все страны мира и 19 миллионов датасетов. Большой-маленький международный стартап помогающий находить данные по всем возможным темам. А также с открытым кодом ряда компонентов в репозиториях commondataio и dateno и реестр каталогов данных Dateno registry
- Data Catalog Armenia - общественный каталог открытых данных по Армении, пока нет государственного единственный такой каталог данных в стране. Включая открытые репозитория кода сбора данных opendataam
Проекты в России/связанные с Россией
- Хаб открытых данных - общественный портал открытых данных со множеством датасетов. Из-за наплыва спамеров пришлось закрыть в нем свободную регистрацию, но всем желающим публиковать данные всегда можем дать такую возможность.
- Госзатраты - проект по сбору и публикации всех данных о государственных и муниципальных контрактах в РФ. Включая открытое API и открытые данные. Большие данные, за более чем 10 лет.
- Ruarxive - национальный цифровой архив России, архивы всех потенциально исчезающих сайтов госорганов, организаций, НКО и отдельных проектов. Постоянно не хватает ресурсов чтобы охватить всё что хочется, потому что исчезает всё постоянно.
- OpenNGO - база по всем некоммерческим организациям в России. По всем - это всем, не только социально ориентированным. Там есть и госНКО, и университеты и тд. Включает открытые данные и открытое API.
- Datacatalogs.ru - портал каталога каталогов данных который мы делали до Dateno и до реестра каталогов данных Dateno. Только российские ресурсы и стран постсоветского пространства, включает не только "чистые" каталоги данных, но и порталы открытого бюджета, к примеру, как то что каталогами данных не является, но могло бы быть.
- Plain Russian - сервис проверки русского языка на простоту. Скорее всего скоро будет неактуальным из-за развития LLM, тем не менее, он существует, работает, полезен.
P.S. А также есть многие проекты которые ещё в работе, или подвисли, или требуют актуализации, или представленные только в виде документов или открытого кода, о них в следующий раз
#opendata #data
Написал большой текст про особенности российской официальной статистики
Российская статистика: немашиночитаемая институциональная фрагментация
в этот раз там не столько про машиночитаемость, и даже не столько про цифровизацию Росстата, сколько про его территориальные подразделения и про гигантское дробление данных и публикаций которые они создают.
Я не стал этого добавлять в большой текст, добавлю здесь. В среднем на сайте терр. органа Росстата опубликовано от 500 до 2000 документов, примерно такое же число публикаций выпущенных ими на бумаге. Если все эти документы собрать вместе то был бы каталог от 50 до 200 тысяч статистических публикаций и это было бы даже каталогом данных, наполовину,уж точно.
Но этого никогда не будет до тех пор пока подразделения Росстата торгуют данными.
#opendata #data #statistics #russia
Российская статистика: немашиночитаемая институциональная фрагментация
в этот раз там не столько про машиночитаемость, и даже не столько про цифровизацию Росстата, сколько про его территориальные подразделения и про гигантское дробление данных и публикаций которые они создают.
Я не стал этого добавлять в большой текст, добавлю здесь. В среднем на сайте терр. органа Росстата опубликовано от 500 до 2000 документов, примерно такое же число публикаций выпущенных ими на бумаге. Если все эти документы собрать вместе то был бы каталог от 50 до 200 тысяч статистических публикаций и это было бы даже каталогом данных, наполовину,уж точно.
Но этого никогда не будет до тех пор пока подразделения Росстата торгуют данными.
#opendata #data #statistics #russia
В The Economist статья The British state is blind [1] о том что статслужба Великобритании неправильно считала миграцию в страну и сильно её занижала. По оценкам с 2019 года, как минимум, был недооценён въезд около 1 миллиона мигрантов.
Статья под пэйволом, но есть копии её текста [2].
Тут бы, конечно, сдержаться от саркастического смеха, но сложно.
Чем отличается британская статслужба от других? Только тем что попались и эту ошибку признают. Почему мы полагаем что другие официальные стат агентства работают лучше или что их данные достовернее? Официальная статистика во многих странах уже достаточно давно в кризисе. Во многих неразвитых и развивающихся странах всё ещё полно технических и методических вопросов хотя бы по основным статпоказателям, а во многих развитых странах альтернативные источники данных становятся приоритетнее,
А думаете статистика в вашей стране не врёт?
Ссылки:
[1] https://www.economist.com/britain/2024/12/04/the-british-state-is-blind
[2] https://us6.campaign-archive.com/?e=35defdcd70&u=1a990feb5c&id=c349203b07#mctoc4
#statistics #data #migration #uk
Статья под пэйволом, но есть копии её текста [2].
Тут бы, конечно, сдержаться от саркастического смеха, но сложно.
Чем отличается британская статслужба от других? Только тем что попались и эту ошибку признают. Почему мы полагаем что другие официальные стат агентства работают лучше или что их данные достовернее? Официальная статистика во многих странах уже достаточно давно в кризисе. Во многих неразвитых и развивающихся странах всё ещё полно технических и методических вопросов хотя бы по основным статпоказателям, а во многих развитых странах альтернативные источники данных становятся приоритетнее,
А думаете статистика в вашей стране не врёт?
Ссылки:
[1] https://www.economist.com/britain/2024/12/04/the-british-state-is-blind
[2] https://us6.campaign-archive.com/?e=35defdcd70&u=1a990feb5c&id=c349203b07#mctoc4
#statistics #data #migration #uk
Я тут задумался над тем какие практические инструменты с LLM внутри я использую в работе и для чего хотелось бы использовать ещё. Хотелось бы, для многого конечно, но не всё ещё существует
Самое очевидное это переписывание текстов с помощью DeepL Write. Очень удобно для переписке и публикаций не на родном языке, поскольку сильно выправляет текст. Похоже на Grammarly, но ощущение что итоговый текст гораздо лучше и поддерживается не только английский язык. Главный минус пока только в том что поддерживаются только 8 языков. В любом случае очень удобно для публикации в англоязычных и других соцсетях
Совсем не такое очевидное, но важное для меня это сбор информации о дата каталогах. Это довольно специфическая лично моя задача по обновлению реестра каталогов данных в Dateno. Этот процесс на текущей стадии ручной, поскольку автоматизированный ранее собранных каталогов уже выполнен и оставшаяся часть работы - это ручная разметка. В частности вручную проставляется инфа по каталогу данных:
- название
- описание
- название владельца
- тип владельца (гос-во, муниципалитет, ученые и тд.)
- тематики
- теги
А также простановка геопривязки для тех ресурсов у которых её нет или если выясняется что они уровня регионов.
Это много ручной работы напрямую влияющей на качество данных в Dateno, поскольку тип владельца, геопривязки и тематики идут в фасеты поиска, а остальные поля отображаются в карточках датасетов.
Оказалось что Perplexity отлично выдаёт ответы на такие вопросы как:
- Who owns <> website ?
- About what this website is <> ?
А также, что очень практически удобно, Perplexity умеет точно отвечать на такие вопросы как "What is ISO3166-2 code of the Magallanes and Chilean Antarctica ?" и выдавать точный код.
Скорее всего Perplexity можно заменить на другую модель, но и текущие результаты вполне полезны.
Сейчас в Dateno около 18% (3.4 миллиона) наборов данных не имеют пометки типа владельца данных, а 2.4 миллиона не имеют привязки к стране/территории.
Это, в любом случае лучше чем у Google Dataset Search, но всё ещё недостаточно хорошо.
Применение LLM в повышении качества метаданных кажется очень реалистичной задачей.
#ai #thoughts #dateno #datasets #data
Самое очевидное это переписывание текстов с помощью DeepL Write. Очень удобно для переписке и публикаций не на родном языке, поскольку сильно выправляет текст. Похоже на Grammarly, но ощущение что итоговый текст гораздо лучше и поддерживается не только английский язык. Главный минус пока только в том что поддерживаются только 8 языков. В любом случае очень удобно для публикации в англоязычных и других соцсетях
Совсем не такое очевидное, но важное для меня это сбор информации о дата каталогах. Это довольно специфическая лично моя задача по обновлению реестра каталогов данных в Dateno. Этот процесс на текущей стадии ручной, поскольку автоматизированный ранее собранных каталогов уже выполнен и оставшаяся часть работы - это ручная разметка. В частности вручную проставляется инфа по каталогу данных:
- название
- описание
- название владельца
- тип владельца (гос-во, муниципалитет, ученые и тд.)
- тематики
- теги
А также простановка геопривязки для тех ресурсов у которых её нет или если выясняется что они уровня регионов.
Это много ручной работы напрямую влияющей на качество данных в Dateno, поскольку тип владельца, геопривязки и тематики идут в фасеты поиска, а остальные поля отображаются в карточках датасетов.
Оказалось что Perplexity отлично выдаёт ответы на такие вопросы как:
- Who owns <> website ?
- About what this website is <> ?
А также, что очень практически удобно, Perplexity умеет точно отвечать на такие вопросы как "What is ISO3166-2 code of the Magallanes and Chilean Antarctica ?" и выдавать точный код.
Скорее всего Perplexity можно заменить на другую модель, но и текущие результаты вполне полезны.
Сейчас в Dateno около 18% (3.4 миллиона) наборов данных не имеют пометки типа владельца данных, а 2.4 миллиона не имеют привязки к стране/территории.
Это, в любом случае лучше чем у Google Dataset Search, но всё ещё недостаточно хорошо.
Применение LLM в повышении качества метаданных кажется очень реалистичной задачей.
#ai #thoughts #dateno #datasets #data
Про плохие практики публикации открытых данных, вот пример совершенно неожиданный, дата хаб штата Массачусетс (США) [1].
С виду он неплохо выглядит, по крайней мере внешне, но, это не должно обманывать, у него есть несколько системных недостатков:
1. Это не каталог данных, а список внешних ресурсов. Практически все ссылки ведут на другие сайты принадлежащие штату или федеральной власти, вроде сайта переписи census.gov
2. Наборов данных там всего 384 что очень мало, потому что на одном только портале города Кембридж (входит в штат) есть 432 набора данных [2]
3. В поиске нет возможности фильтровать ни по одному из фильтров кроме темы
4. Нет API, нет экспорта метаданных,
5. Часть ссылок вообще ведут на страницы сервиса Tableau с дашбордами откуда данные не скачать без авторизации [3]
В общем-то для США это довольно редкий пример, потому как там почти все порталы открытых данных сделаны, либо на движке Socrata, либо CKAN, либо ArcGIS Hub.
При этом у штата есть вполне приличный по размеру и содержанию каталог геоданных [4] с 2439 наборами данных, включая исторические.
Впрочем я уже писал о том что в США важные особенности развития открытых данных - это высокая их фрагментированность, рассеяность по множеству ресурсов и в том что геоданных и научных данных значительно больше всех остальных.
Ссылки:
[1] https://data.mass.gov
[2] https://data.cambridgema.gov/browse
[3] https://public.tableau.com/app/profile/drap4687/viz/MassachusettsTrialCourtChargesDashboard/AllCharges
[4] https://gis.data.mass.gov/search
#opendata #datasets #data #usa #geodata
С виду он неплохо выглядит, по крайней мере внешне, но, это не должно обманывать, у него есть несколько системных недостатков:
1. Это не каталог данных, а список внешних ресурсов. Практически все ссылки ведут на другие сайты принадлежащие штату или федеральной власти, вроде сайта переписи census.gov
2. Наборов данных там всего 384 что очень мало, потому что на одном только портале города Кембридж (входит в штат) есть 432 набора данных [2]
3. В поиске нет возможности фильтровать ни по одному из фильтров кроме темы
4. Нет API, нет экспорта метаданных,
5. Часть ссылок вообще ведут на страницы сервиса Tableau с дашбордами откуда данные не скачать без авторизации [3]
В общем-то для США это довольно редкий пример, потому как там почти все порталы открытых данных сделаны, либо на движке Socrata, либо CKAN, либо ArcGIS Hub.
При этом у штата есть вполне приличный по размеру и содержанию каталог геоданных [4] с 2439 наборами данных, включая исторические.
Впрочем я уже писал о том что в США важные особенности развития открытых данных - это высокая их фрагментированность, рассеяность по множеству ресурсов и в том что геоданных и научных данных значительно больше всех остальных.
Ссылки:
[1] https://data.mass.gov
[2] https://data.cambridgema.gov/browse
[3] https://public.tableau.com/app/profile/drap4687/viz/MassachusettsTrialCourtChargesDashboard/AllCharges
[4] https://gis.data.mass.gov/search
#opendata #datasets #data #usa #geodata
В рубрике закрытых данных в РФ с декабря 2021 года с портала данных Министерства культуры РФ [1] исчезло 8 наборов данных. Было 62 [2], а стало 54 на начало декабря 2024 г. Новости портала не обновлялись также с середины 2021 года [3]
Хорошая новость в том что оставшиеся наборы данных пока ещё обновляются.
А когда-то это был один из лучших порталов открытых данных в России. Говорю как человек которые уже пересмотрел тысячи сайтов с открытыми данными.
Ссылки:
[1] https://opendata.mkrf.ru/opendata
[2] https://web.archive.org/web/20211130053406/https://opendata.mkrf.ru/opendata
[3] https://opendata.mkrf.ru/item/newslist
#closeddata #data #opendata #russia #culture
Хорошая новость в том что оставшиеся наборы данных пока ещё обновляются.
А когда-то это был один из лучших порталов открытых данных в России. Говорю как человек которые уже пересмотрел тысячи сайтов с открытыми данными.
Ссылки:
[1] https://opendata.mkrf.ru/opendata
[2] https://web.archive.org/web/20211130053406/https://opendata.mkrf.ru/opendata
[3] https://opendata.mkrf.ru/item/newslist
#closeddata #data #opendata #russia #culture
Свежие тенденции госинноваций из последнего отчета ОЭСР [1]:
- Тенденция 1: ориентированные на будущее и совместно созданные государственные услуги
- Тенденция 2: Цифровые и инновационные основы для эффективных государственных услуг
- Тенденция 3: персонализированные и проактивные государственные услуги для -обеспечения доступности и инклюзивности
- Тенденция 4: Государственные услуги, основанные на данных, для принятия более эффективных решений
- Тенденция 5: Государственные услуги как возможность участия общественности
Вернее ну как свежие, мало что поменялось, разве что все инновации стали привязаны к цифровым сервисам.
Я не устаю повторять что нет давно уже цифровой экономики, есть просто Экономика и она вся цифровая, а та что нецифровая - это Маргинальная экономика.
И нет давно уже Цифрового госуправления. Есть Госуправление и оно должно быть/уже есть всё цифровое. А всё что нецифровое - это форма варварства.
По 4-му тренду практически все примеры про открытые данные и про трансформацию порталов с открытыми данным в оказание услуг информирования, например, о качестве воздуха. Про примеры я как-нибудь потом напишу, про те что самые интересные, а также как тут не вспомнить про очень полезный каталог инноваций у ОЭСР - OPSI [2] с разбором очень многих проектов.
А вообще такие доклады полезны примерами. Почитать их стоит хотя бы просто чтобы знать что в мире творится то.
Ссылки:
[1] https://www.oecd.org/en/publications/global-trends-in-government-innovation-2024_c1bc19c3-en/full-report.html
[2] https://oecd-opsi.org/
#opendata #opengov #data #oecd #government #innovation
- Тенденция 1: ориентированные на будущее и совместно созданные государственные услуги
- Тенденция 2: Цифровые и инновационные основы для эффективных государственных услуг
- Тенденция 3: персонализированные и проактивные государственные услуги для -обеспечения доступности и инклюзивности
- Тенденция 4: Государственные услуги, основанные на данных, для принятия более эффективных решений
- Тенденция 5: Государственные услуги как возможность участия общественности
Вернее ну как свежие, мало что поменялось, разве что все инновации стали привязаны к цифровым сервисам.
Я не устаю повторять что нет давно уже цифровой экономики, есть просто Экономика и она вся цифровая, а та что нецифровая - это Маргинальная экономика.
И нет давно уже Цифрового госуправления. Есть Госуправление и оно должно быть/уже есть всё цифровое. А всё что нецифровое - это форма варварства.
По 4-му тренду практически все примеры про открытые данные и про трансформацию порталов с открытыми данным в оказание услуг информирования, например, о качестве воздуха. Про примеры я как-нибудь потом напишу, про те что самые интересные, а также как тут не вспомнить про очень полезный каталог инноваций у ОЭСР - OPSI [2] с разбором очень многих проектов.
А вообще такие доклады полезны примерами. Почитать их стоит хотя бы просто чтобы знать что в мире творится то.
Ссылки:
[1] https://www.oecd.org/en/publications/global-trends-in-government-innovation-2024_c1bc19c3-en/full-report.html
[2] https://oecd-opsi.org/
#opendata #opengov #data #oecd #government #innovation
OECD
Full Report
Governments worldwide are transforming public services through innovative approaches that place people at the center of design and delivery. This report analyses nearly 800 case studies from 83 countries and identifies five critical trends in government innovation…
В рубрике интересных каталогов данных я ранее писал про WIS 2.0 движок от Всемирной метеорологической организации (WMO) по сбору стандартизированных данных о погоде [1]. Но это относительно новый продукт, ведь большое число стран интегрировано с системами WMO и без него. И делают они это, не все но многие, с помощью другого продукта который называется OpenWIS [2].
Это продукт с открытым кодом созданный в The OpenWIS Association AISBL через кооперацию более чем десятка стран.
На базе OpenWIS работают порталы с данными о погоде в России [3], Таиланде [4], Индонезии [5], Южной Корее [6] и многих других странах.
Внутри OpenWIS форк продукта Geonetwork, специализированного каталога метаданных используемого для публикации и поиска по пространственным данным. Поскольку у Geonetwork много открытых API и интерфейсов то к этим порталам можно подключится даже когда их веб интерфейсы закрыты паролями. Например, у российской инсталляции OpenWIS открытое API по стандарту OAI-PMH [7] и, скорее всего и другие тоже есть.
Код OpenWIS не развивается уже несколько лет, явно постепенно метеорологические агентства будут переходить на WIS 2.0 и на другие решения, тем не менее эти порталы это тоже каталоги данных. В реестре каталогов Dateno их пока нет, кроме портала OpenWIS в Таиланде, который был идентифицирован как экземпляр Geonetwork хотя, правильнее всё же будет определять OpenWIS как отдельный тип каталогов данных.
С одной стороны данных в этих каталогах данных немного, сотни слоёв карт, максимум, а с другой стороны их сбор не требует сверхусилий и рано или поздно они появятся в поиске Dateno.
Ссылки:
[1] https://t.iss.one/begtin/5972
[2] https://github.com/OpenWIS/openwis
[3] https://meta.gisc-msk.wis.mecom.ru/openwis-portal/srv/en/main.home
[4] https://wis.tmd.go.th/openwis-user-portal/srv/en/main.home
[5] https://wis.bmkg.go.id/openwis-user-portal/srv/en/about.home
[6] https://dcpc.nmsc.kma.go.kr/openwis-user-portal/srv/en/main.home
[7] https://meta.gisc-msk.wis.mecom.ru/openwis-portal/srv/en/oaipmh?verb=Identify
#opendata #datacatalogs #data #meteorology #opensource
Это продукт с открытым кодом созданный в The OpenWIS Association AISBL через кооперацию более чем десятка стран.
На базе OpenWIS работают порталы с данными о погоде в России [3], Таиланде [4], Индонезии [5], Южной Корее [6] и многих других странах.
Внутри OpenWIS форк продукта Geonetwork, специализированного каталога метаданных используемого для публикации и поиска по пространственным данным. Поскольку у Geonetwork много открытых API и интерфейсов то к этим порталам можно подключится даже когда их веб интерфейсы закрыты паролями. Например, у российской инсталляции OpenWIS открытое API по стандарту OAI-PMH [7] и, скорее всего и другие тоже есть.
Код OpenWIS не развивается уже несколько лет, явно постепенно метеорологические агентства будут переходить на WIS 2.0 и на другие решения, тем не менее эти порталы это тоже каталоги данных. В реестре каталогов Dateno их пока нет, кроме портала OpenWIS в Таиланде, который был идентифицирован как экземпляр Geonetwork хотя, правильнее всё же будет определять OpenWIS как отдельный тип каталогов данных.
С одной стороны данных в этих каталогах данных немного, сотни слоёв карт, максимум, а с другой стороны их сбор не требует сверхусилий и рано или поздно они появятся в поиске Dateno.
Ссылки:
[1] https://t.iss.one/begtin/5972
[2] https://github.com/OpenWIS/openwis
[3] https://meta.gisc-msk.wis.mecom.ru/openwis-portal/srv/en/main.home
[4] https://wis.tmd.go.th/openwis-user-portal/srv/en/main.home
[5] https://wis.bmkg.go.id/openwis-user-portal/srv/en/about.home
[6] https://dcpc.nmsc.kma.go.kr/openwis-user-portal/srv/en/main.home
[7] https://meta.gisc-msk.wis.mecom.ru/openwis-portal/srv/en/oaipmh?verb=Identify
#opendata #datacatalogs #data #meteorology #opensource