Буоно серата, мужички и дамы,
Каждое второе сообщение в моей личке выглядит примерно так: "как вкатиться в AI, брат?".
Для начала расскажу вам коротко свой путь самурая. Впервые я потыкал ML и обучил SVM в махровом 2013 в Школе Анализа Данных Яндекса. Мне эта возня с данными понравилась, и на последнем курсе шараги я стал подыскивать себе программу PhD за бугром. Долго не думая, перед новым годом, я разослал примерно дохульён емейлов со своим резюме и получил около 10 ответов и впоследствии два с половиной офера. Затем пришлось изрядно попотеть, доказывая, что я не верблюд с беларуским дипломом. Не знаю, как мне удалось убедить Бундестаг, чтобы они отсыпали денег на аспирантуру именно мне, а не другим немецким студентам.
Я был счастлив. Но длилось это недолго. Минул примерно год, и я начинал ощущать какую-то тяжесть, как будто на запястьях что-то защелкивалось, слегка прибивая меня к земле. Это были небольшие, но увесистые кандалы, по гирьке на каждую ногу и руку, которые мне мило навесил профессор. Требовались исключительные достижения (3-5 статей на топовых конференциях) и удачное стечение обстоятельств, чтобы крепостной получил вольную. Не смотря на это, я почти в самоволку дважды убежал на стажировку в индустрию (в одну из ныне запрещенных в РФ организаций). Итого, 5-лет веселого рабства в старинном немецком вузе завершилось получением мной вольной грамоты по случаю защиты докторской диссертации в Компукторном Зрении.
Продолжение следует.
#мойпуть
@Artem
Каждое второе сообщение в моей личке выглядит примерно так: "как вкатиться в AI, брат?".
Для начала расскажу вам коротко свой путь самурая. Впервые я потыкал ML и обучил SVM в махровом 2013 в Школе Анализа Данных Яндекса. Мне эта возня с данными понравилась, и на последнем курсе шараги я стал подыскивать себе программу PhD за бугром. Долго не думая, перед новым годом, я разослал примерно дохульён емейлов со своим резюме и получил около 10 ответов и впоследствии два с половиной офера. Затем пришлось изрядно попотеть, доказывая, что я не верблюд с беларуским дипломом. Не знаю, как мне удалось убедить Бундестаг, чтобы они отсыпали денег на аспирантуру именно мне, а не другим немецким студентам.
Я был счастлив. Но длилось это недолго. Минул примерно год, и я начинал ощущать какую-то тяжесть, как будто на запястьях что-то защелкивалось, слегка прибивая меня к земле. Это были небольшие, но увесистые кандалы, по гирьке на каждую ногу и руку, которые мне мило навесил профессор. Требовались исключительные достижения (3-5 статей на топовых конференциях) и удачное стечение обстоятельств, чтобы крепостной получил вольную. Не смотря на это, я почти в самоволку дважды убежал на стажировку в индустрию (в одну из ныне запрещенных в РФ организаций). Итого, 5-лет веселого рабства в старинном немецком вузе завершилось получением мной вольной грамоты по случаю защиты докторской диссертации в Компукторном Зрении.
Продолжение следует.
#мойпуть
@Artem
Откуда AI хайп и почему именно сейчас?
И немного баек от меня.
Я начал заниматься Deep Learning в 2015 году, когда переехал в Германию. Даже тогда, когда уже прошло 3 года после появления культовой архитектуры AlexNet, еще не все из научного мира купили идею нейронных сетей. В нашей научной группе CompVis (где зародился Stable Diffusion) проф был из тех, кто еще не полностью поверил в силу Deep Learning, и и поэтому первые 3-4 месяца я большую часть своего времени провел за работой с SVM (Support Vector Machine)
Но, с первых дней я понемногу начал поглядывать и на нейросети вместе со своими постдоком. TensorFlow тогда еще не было, а правил бал Caffe из Berkeley AI Research – ужасно неудобный фреймворк, где сеть нужно было определять в protobuf файле из набора заготовленных слоев. Ни о каком autograd и речи не шло. В 2016 на NeurIPS вышла моя статья CliqueCNN про self-supervised learning, и она была первой статьей по нейросетям из нашей научной группы.
В общем, я к тому, что Deep Learning с нами уже довольно давно (ну, или не так давно, смотря как посмотреть), и трансформеры, то на чем строятся все современные языковые модели, изобрели в далеком 2017 году, но дикий хайп пошел только в 2023. Я за хайпом никогда не шел, и когда начинал PhD, о нейросетях не кричала каждая собака в твиттере. В 2019 году мне показалось: “Ну, вот сейчас пик популярности AI и Deep Learning, смотри как StyleGAN завирусился”. Но это был мой пузырь, и высокая популярность нейросеток тогда была только внутри научного мира. Появилась куча AI программ и толпы студентов пошли изучать такие sexу предметы, как Machine Learning и Data Science. Это было только начало.
Ну а теперь, в 2023, я вообще в шоке от того, что происходит. Все как будто с цепи сорвались с этим ChatGPT и китайскими клонами. Мне за последние две недели 4 раза предлагали дать интервью в разные онлайн издания по поводу AI. Забавно наблюдать FOMO не только у людей, но и у крупных технологических компаний, которые готовы рисковать репутацией, лишь бы запрыгнуть в хайп-трейн. Самое смешное, так это то из-за чего этот хайп формируется. По сути технология за ChatGPT не является прорывной, никакой AGI изобретен не был. Все что произошло — так это, OpenAI смогли красиво обернуть свою модель (за это им стоит отдать должное) и дать потрогать ее массе обывателей, далеким от технологий. Вот тут люди, которые не понимают как это все работает, очнулись и иcпытали катарсис. Про AI стали говорить из каждого утюга, гуру учат зарабатывать с помощью ChatGPT, а VC закричали “возьмите наши бабки”. Ведь, то что ты не понимаешь тебе кажется магией, и для многих ChatGPT действительно выглядит как что-то из будущего. Да, инструмент оказался полезный, и уже может автоматизировать некоторую рутинную работу с текстом и кодом. Но магического там мало – линейная алгебра, бро. И до того как чат-боты перестанут нести пургу с уверенным лицом и действительно поймут, как устроен наш мир, пройдет еще несколько лет (предсказание сугубо оптимистическое и неконкретное).
Так что, друзья, давайте лучше будем разбираться в технологиях, а не бежать за хайпом. Для этого мы тут и собрались.
#карьера #мойпуть
@ai_newz
И немного баек от меня.
Я начал заниматься Deep Learning в 2015 году, когда переехал в Германию. Даже тогда, когда уже прошло 3 года после появления культовой архитектуры AlexNet, еще не все из научного мира купили идею нейронных сетей. В нашей научной группе CompVis (где зародился Stable Diffusion) проф был из тех, кто еще не полностью поверил в силу Deep Learning, и и поэтому первые 3-4 месяца я большую часть своего времени провел за работой с SVM (Support Vector Machine)
Но, с первых дней я понемногу начал поглядывать и на нейросети вместе со своими постдоком. TensorFlow тогда еще не было, а правил бал Caffe из Berkeley AI Research – ужасно неудобный фреймворк, где сеть нужно было определять в protobuf файле из набора заготовленных слоев. Ни о каком autograd и речи не шло. В 2016 на NeurIPS вышла моя статья CliqueCNN про self-supervised learning, и она была первой статьей по нейросетям из нашей научной группы.
В общем, я к тому, что Deep Learning с нами уже довольно давно (ну, или не так давно, смотря как посмотреть), и трансформеры, то на чем строятся все современные языковые модели, изобрели в далеком 2017 году, но дикий хайп пошел только в 2023. Я за хайпом никогда не шел, и когда начинал PhD, о нейросетях не кричала каждая собака в твиттере. В 2019 году мне показалось: “Ну, вот сейчас пик популярности AI и Deep Learning, смотри как StyleGAN завирусился”. Но это был мой пузырь, и высокая популярность нейросеток тогда была только внутри научного мира. Появилась куча AI программ и толпы студентов пошли изучать такие sexу предметы, как Machine Learning и Data Science. Это было только начало.
Ну а теперь, в 2023, я вообще в шоке от того, что происходит. Все как будто с цепи сорвались с этим ChatGPT и китайскими клонами. Мне за последние две недели 4 раза предлагали дать интервью в разные онлайн издания по поводу AI. Забавно наблюдать FOMO не только у людей, но и у крупных технологических компаний, которые готовы рисковать репутацией, лишь бы запрыгнуть в хайп-трейн. Самое смешное, так это то из-за чего этот хайп формируется. По сути технология за ChatGPT не является прорывной, никакой AGI изобретен не был. Все что произошло — так это, OpenAI смогли красиво обернуть свою модель (за это им стоит отдать должное) и дать потрогать ее массе обывателей, далеким от технологий. Вот тут люди, которые не понимают как это все работает, очнулись и иcпытали катарсис. Про AI стали говорить из каждого утюга, гуру учат зарабатывать с помощью ChatGPT, а VC закричали “возьмите наши бабки”. Ведь, то что ты не понимаешь тебе кажется магией, и для многих ChatGPT действительно выглядит как что-то из будущего. Да, инструмент оказался полезный, и уже может автоматизировать некоторую рутинную работу с текстом и кодом. Но магического там мало – линейная алгебра, бро. И до того как чат-боты перестанут нести пургу с уверенным лицом и действительно поймут, как устроен наш мир, пройдет еще несколько лет (предсказание сугубо оптимистическое и неконкретное).
Так что, друзья, давайте лучше будем разбираться в технологиях, а не бежать за хайпом. Для этого мы тут и собрались.
#карьера #мойпуть
@ai_newz
Computer Vision & Learning Group
Home - Computer Vision & Learning Group
Prof. Björn Ommer's Machine Vision and Learning group at Ludwig Maximilian University (LMU) of Munich.
GenAI: Персональный апдейт
Несколько недель назад Марк анонсировал, что будет создана новая организация внутри Meta – GenAI, которая будет заниматься сугубо Generative AI. Наша команда покинула Reality Labs и попала в новую организацию.
Я очень рад этому событию, ведь последний год я занимался диффузионными моделями, а теперь полный газ в пол! Но на диффузии мы, конечно, не ограничиваемся и будем искать новые эффективные модели.
Ещё бонусом теперь я смогу плотнее сотрудничать с командами из FAIR, которые создали make-a-scene и make-a-video, или ту же LLaMa, потому что мы теперь с ними в одной организации.
Exciting stuff!
#карьера #мойпуть
@ai_newz
Несколько недель назад Марк анонсировал, что будет создана новая организация внутри Meta – GenAI, которая будет заниматься сугубо Generative AI. Наша команда покинула Reality Labs и попала в новую организацию.
Я очень рад этому событию, ведь последний год я занимался диффузионными моделями, а теперь полный газ в пол! Но на диффузии мы, конечно, не ограничиваемся и будем искать новые эффективные модели.
Ещё бонусом теперь я смогу плотнее сотрудничать с командами из FAIR, которые создали make-a-scene и make-a-video, или ту же LLaMa, потому что мы теперь с ними в одной организации.
Exciting stuff!
#карьера #мойпуть
@ai_newz
Потыкал я в обновленного Bard-а.
Я бы никогда не дал доступ ChatGPT к своим письмам, но т.к. письма и так уже на серверах гугла, то перешагнуть этот порог с Бардом было нетрудно. Интересно было посмотреть как он хорошо ищет в моих мейлах.Оказалось, что не очень.
Пытался узнать, что мне впервые написал мой PhD научник из Хайдельберга - Prof. Björn Ommer. В итоге я очень долго мучал Барда, чтобы тот смог найти емейлы по имени отправителя. Паршивец наотрез отказывался, пока я явно не выписал e-mail адрес. Затем он не хотел искать письма раньше чем 2021 год (а у меня их там тысячи), пока я несколько раз не сказал явно, мол "I had emails from Björn before 2021". Только после этого он осилил задачку.
Письмо от Авг. 2015 реально существует, где я спрашивал у Бьёрна что мне делать по прибытию в Германию в первую неделю. Но это было не первое письмо все равно!
Короче, продукт работает, но еще довольно сырой.
Попробовать можно тут. Не забудьте включить "Extensions" для доступа к gdrive и gmail.
#мойпуть #personal
@ai_newz
Я бы никогда не дал доступ ChatGPT к своим письмам, но т.к. письма и так уже на серверах гугла, то перешагнуть этот порог с Бардом было нетрудно. Интересно было посмотреть как он хорошо ищет в моих мейлах.
Пытался узнать, что мне впервые написал мой PhD научник из Хайдельберга - Prof. Björn Ommer. В итоге я очень долго мучал Барда, чтобы тот смог найти емейлы по имени отправителя. Паршивец наотрез отказывался, пока я явно не выписал e-mail адрес. Затем он не хотел искать письма раньше чем 2021 год (а у меня их там тысячи), пока я несколько раз не сказал явно, мол "I had emails from Björn before 2021". Только после этого он осилил задачку.
Письмо от Авг. 2015 реально существует, где я спрашивал у Бьёрна что мне делать по прибытию в Германию в первую неделю. Но это было не первое письмо все равно!
Короче, продукт работает, но еще довольно сырой.
Попробовать можно тут. Не забудьте включить "Extensions" для доступа к gdrive и gmail.
#мойпуть #personal
@ai_newz
Нетворк, нетворкинг, нетворкович или почему вам нужно посещать конференции
Вернулся с ICCV. Еще раз осознал, что самый важный ресурс в работе - это человеческий капитал. Связи и знакомства существенно влияют на то, по какой карьерной траектории ты пойдешь, позовут ли тебя на стажировку в FAANG, предложат ли тебе участвовать в стартапе на ранней стадии и т.д. Поэтому крайне важно заводить новые знакомства (мы сейчас говорим как минимум в профессиональном контектсе), и стремиться знать как можно больше людей в своей сфере.
Конечно, глубокие знания и опыт в своей области критически важны для карьерного продвижения, но владение социальными аспектами может значительно ускорить ваш рост.
А где удобнее и проще всего знакомится с топовыми людьми из сферы AI и ML? Правильно, на конференциях. Можно поболтать с авторами лучших статей на постерах, сходить на ужин с группой новых людей, познакомиться и пообщаться с сайнтистами из топовых лаб в академии или FAANG на одной из вечеринок, организуемых компаниями. Это только несколько примеров как занетворкать на конференции. Я уже не говорю о про-левеле, когда вы сами организуете воркшоп и приглашаете докладчиков, сами даете доклад либо просто нетворкаете в тусовке эйай ньюз.
Например, приглашение на свою первую стажировку в Facebook AI Research я получил именно благодаря нетворкингу на конференции. В 2018 я выступал на European Conference on Computer Vision с пленарным докладом (фото внизу). После своей презентации я подошел познакомиться с автором заинтересовавшего меня доклада про DensePose от Facebook. Это была Наталия Неверова, которая как раз искала интернов на следующий год. Если бы я к ней не подошел, то и не получил бы приглашение пройти собеседование и не попал бы на стажировку в FAIR.
Так что, друзья, гоняйте на конференции и знакомьтесь - это очень важно!
#конфа #карьера #мойпуть #personal
@ai_newz
Вернулся с ICCV. Еще раз осознал, что самый важный ресурс в работе - это человеческий капитал. Связи и знакомства существенно влияют на то, по какой карьерной траектории ты пойдешь, позовут ли тебя на стажировку в FAANG, предложат ли тебе участвовать в стартапе на ранней стадии и т.д. Поэтому крайне важно заводить новые знакомства (мы сейчас говорим как минимум в профессиональном контектсе), и стремиться знать как можно больше людей в своей сфере.
Конечно, глубокие знания и опыт в своей области критически важны для карьерного продвижения, но владение социальными аспектами может значительно ускорить ваш рост.
А где удобнее и проще всего знакомится с топовыми людьми из сферы AI и ML? Правильно, на конференциях. Можно поболтать с авторами лучших статей на постерах, сходить на ужин с группой новых людей, познакомиться и пообщаться с сайнтистами из топовых лаб в академии или FAANG на одной из вечеринок, организуемых компаниями. Это только несколько примеров как занетворкать на конференции. Я уже не говорю о про-левеле, когда вы сами организуете воркшоп и приглашаете докладчиков, сами даете доклад либо просто нетворкаете в тусовке эйай ньюз.
Например, приглашение на свою первую стажировку в Facebook AI Research я получил именно благодаря нетворкингу на конференции. В 2018 я выступал на European Conference on Computer Vision с пленарным докладом (фото внизу). После своей презентации я подошел познакомиться с автором заинтересовавшего меня доклада про DensePose от Facebook. Это была Наталия Неверова, которая как раз искала интернов на следующий год. Если бы я к ней не подошел, то и не получил бы приглашение пройти собеседование и не попал бы на стажировку в FAIR.
Так что, друзья, гоняйте на конференции и знакомьтесь - это очень важно!
#конфа #карьера #мойпуть #personal
@ai_newz
This media is not supported in your browser
VIEW IN TELEGRAM
Короче, мы выкатили диффузию в инстаграм для редактирования изображений, а именно - генерацию фона по тексту. Эта модель была анонсирована еще на Connect, но только сейчас ее выкатили в прод в США.
Загружаешь фото, вводишь любой пропмт, например, "преследуемый динозаврами" или "я в Париже", и получаешь несколько новых версий своей фотки.
Моделька основана на нашей text2image диффузии Emu и технологии по типу SAM, которая позволяет автоматически находить нужную маску.
Тут я говорю "мы выкатили", потому что мы с нашей командой крутили и искоряли эту модель, чтобы она работала за пару секунд.
Диффузия Go Brrrrr! - это лозунг нашей команды.
Приятно, когда результатами твоей работы могут пользоваться миллионы людей. Даже работая в ресерче в фаанге, не всегда есть такая возможность. Мне в этом смысле повезло, т.к. наша GenAI орга, кроме написания статей, ещё и катит ресерч в продукты и имеет реальный импакт.
#personal #мойпуть
@ai_newz
Загружаешь фото, вводишь любой пропмт, например, "преследуемый динозаврами" или "я в Париже", и получаешь несколько новых версий своей фотки.
Моделька основана на нашей text2image диффузии Emu и технологии по типу SAM, которая позволяет автоматически находить нужную маску.
Тут я говорю "мы выкатили", потому что мы с нашей командой крутили и искоряли эту модель, чтобы она работала за пару секунд.
Диффузия Go Brrrrr! - это лозунг нашей команды.
Приятно, когда результатами твоей работы могут пользоваться миллионы людей. Даже работая в ресерче в фаанге, не всегда есть такая возможность. Мне в этом смысле повезло, т.к. наша GenAI орга, кроме написания статей, ещё и катит ресерч в продукты и имеет реальный импакт.
#personal #мойпуть
@ai_newz
Staff Research Scientist: Персональный апдейт
У меня ещё есть классная новость, которой я бы хотел с вами поделиться! В понедельник я запромоутился до E6, иными словами я теперь Staff Research Scientist в Meta GenAI.
Удалось это благодаря очень широкому импакту от проекта в Generative AI, который я сам предложил, вел и завершил в прошлом году. Проект пока не публичный, поэтому я не могу рассказать о нем детально.
До этого я был на терминальном уровне - Senior Research Scientist, на котором многие застревают навсегда. Требуются дополнительные усилия и персональные качества (я о них писал тут), чтобы выйти из этого лимба и стать Стаффом. Зато теперь у меня открылся новый ladder E6+, качать таланты в котором на порядок сложнее чем между Джуном и Синьором. Но в этом есть и челлендж и возможность дальнейшего развития!
Exciting stuff!
#карьера #мойпуть
@ai_newz
У меня ещё есть классная новость, которой я бы хотел с вами поделиться! В понедельник я запромоутился до E6, иными словами я теперь Staff Research Scientist в Meta GenAI.
Удалось это благодаря очень широкому импакту от проекта в Generative AI, который я сам предложил, вел и завершил в прошлом году. Проект пока не публичный, поэтому я не могу рассказать о нем детально.
До этого я был на терминальном уровне - Senior Research Scientist, на котором многие застревают навсегда. Требуются дополнительные усилия и персональные качества (я о них писал тут), чтобы выйти из этого лимба и стать Стаффом. Зато теперь у меня открылся новый ladder E6+, качать таланты в котором на порядок сложнее чем между Джуном и Синьором. Но в этом есть и челлендж и возможность дальнейшего развития!
Exciting stuff!
#карьера #мойпуть
@ai_newz
Немного личных баек про работу. Так как я теперь Staff Research Scientist (подробнее об этом писал тут), сегодня мне пришло приглашение пройти курсы для проведения интервью на более синьорные роли в компании.
До этого я несколько лет собеседовал челов как на AI позиции (CV, NLP), так на Software Engineer (SWE) по трем типам интервью:
— Coding
— AI Coding
— AI Research Design
Теперь буду учиться собеседовать людей на AI Research Screen интервью. Это самое первое интервью, на которое кандидат попадает (разговор с рекрутером не в счёт) и по его результатам решается, приглашать ли чела на onsite раунды или нет. Скрининг дают делать только начиная со старших уровней, обычно E6+, так как тут важно уметь опытным глазом быстро оценить потенциал кандидата и насколько он подходит на выбранную роль.
Onsite интервью — это то, что раньше было полным днём собеседований, когда кандидату оплачивали билеты на самолёт и отель, чтобы он пришел в офис компании физически и попотел у вайтборда в течение 5-6 раундов собеседований, все в течение одного дня. Сейчас к сожалению такие поездки не делают, и все финальные раунды проходят по видео.
Кроме этого, меня записали на курс Behavioral интервью, что тоже обычно проводится людьми IC6+ (про уровни писал тут), где нужно оценить софт-скилы кандидата. Это также одно из решающих интервью, где всплывают сигналы, определяющие уровень кандидата, например middle vs senior.
Ну, и для полного комплекта, я зарегался ещё на тренинг для проведения ML System Design — это более прикладная штука, когда кандидату нужно спроектировать end-2-end ML систему. У ресерчеров такого интервью не бывает, а вот для ML Engineer и Research Engineer его нужно проходить.
Планирую собрать все лычки всех типов интервью🙂 . Это очень полезно как для развития своих скилов, так и при смене работы — понимаешь всю кухню оценки кандидатов изнутри.
Если у вас есть какие-то вопросы, или если что-то ещё интересует в плане карьеры — велком в комменты.
#карьера #мойпуть
@ai_newz
До этого я несколько лет собеседовал челов как на AI позиции (CV, NLP), так на Software Engineer (SWE) по трем типам интервью:
— Coding
— AI Coding
— AI Research Design
Теперь буду учиться собеседовать людей на AI Research Screen интервью. Это самое первое интервью, на которое кандидат попадает (разговор с рекрутером не в счёт) и по его результатам решается, приглашать ли чела на onsite раунды или нет. Скрининг дают делать только начиная со старших уровней, обычно E6+, так как тут важно уметь опытным глазом быстро оценить потенциал кандидата и насколько он подходит на выбранную роль.
Onsite интервью — это то, что раньше было полным днём собеседований, когда кандидату оплачивали билеты на самолёт и отель, чтобы он пришел в офис компании физически и попотел у вайтборда в течение 5-6 раундов собеседований, все в течение одного дня. Сейчас к сожалению такие поездки не делают, и все финальные раунды проходят по видео.
Кроме этого, меня записали на курс Behavioral интервью, что тоже обычно проводится людьми IC6+ (про уровни писал тут), где нужно оценить софт-скилы кандидата. Это также одно из решающих интервью, где всплывают сигналы, определяющие уровень кандидата, например middle vs senior.
Ну, и для полного комплекта, я зарегался ещё на тренинг для проведения ML System Design — это более прикладная штука, когда кандидату нужно спроектировать end-2-end ML систему. У ресерчеров такого интервью не бывает, а вот для ML Engineer и Research Engineer его нужно проходить.
Планирую собрать все лычки всех типов интервью
Если у вас есть какие-то вопросы, или если что-то ещё интересует в плане карьеры — велком в комменты.
#карьера #мойпуть
@ai_newz
Please open Telegram to view this post
VIEW IN TELEGRAM
Еще раз обо мне
В канал пришло много новых людей, решил еще раз представиться и сделать подборку интересных постов.
Меня зовут Артём, я из Беларуси. Сейчас живу в Швейцарии и работаю в Meta GenAI на позиции Staff Research Scientist. До этого сделал PhD в университете Хайдельберга, в той самой научной группе, где придумали Stable Diffusion. За время в лабе я опубликовал кучу статей на топовых конфах. В перерывах между статьями я оттачивал свои эйай навыки на практике, упарываясь на Kaggle соревнованиях (я очень азартный тип в этом плане) – добрался до Top45 в мировом рейтинге с несколькими золотыми медалями. Больше про меня есть в этом посте и по тегам #personal и #мойпуть. [Если что, то я на фотке слева]
Подборка личных постов:
▪️Рассказ о том, как я вкатился в AI/ML
▪️Откуда AI хайп и как было, когда я начинал свое PhD
▪️Видео-интервью со мной
▪️Вот здесь делюсь личной радостью, ведь мы завезли диффузию в инсту,
▪️На основе emu, которую лично я оптимизировал, чтоб вот быстро и чётко
▪️Еще про то как мы сделали и ускорили генеративные стикеры для инсты, WhatsApp и FB Messenger.
▪️Про наш громкий релиз Imagine Flash, риалтайм генерацию картинок – проект, который я вел.
▪️Моя статья об ускорении диффузии с помощью кеширования, без потери качества конечно же.
▪️Как я приделывал ноги Аватарам в метаверсе [ч1, ч2], пока работа в Meta Reality Labs.
▪️Пост-апдейт и про, то как я недавно стал стафом в Meta GenAI (ну вы поняли).
Из еще почитать:
▪️Пост про грейды в бигтехе [ч1, ч2]. Все же в курсе, что сеньор это еще не все?:)
▪️Список книг для изучения ML в 2024.
▪️Гайд по ускорению диффузии [ч1, ч2], так сказать полевой опыт.
▪️Разбор того, как дистиллировали sd3 в 4 шага, который репостнулCEO бывший CEO Stability
▪️Список лекций и туториалов про 3D Human Understanding от топовых ученых из этой сферы.
▪️Лонгрид про парижский стартап Mistral и мое знакомство с фаундером.
▪️Пост про GR00T, модельку от nvidia, которая может стать chatgpt моментом в робототехнике.
▪️Еще вот про те самые чаевые в $200 для LMM и финальный список всех трюков, чтобы вставить в промпт по умолчанию.
Недавно запустился еженедельный #дайджест с кратким обзором новостей.
А также в ленте можно найти 1000 и 1 разбор свежих пейперов с мои авторитетным мнением, еще есть рубрика #ликбез с разбором базовых тем и #карьера с моими мыслями/байками по карьере в AI/ML.
Ну что, поздравляю всех новоприбывших! Обнял ❤️
@ai_newz
В канал пришло много новых людей, решил еще раз представиться и сделать подборку интересных постов.
Меня зовут Артём, я из Беларуси. Сейчас живу в Швейцарии и работаю в Meta GenAI на позиции Staff Research Scientist. До этого сделал PhD в университете Хайдельберга, в той самой научной группе, где придумали Stable Diffusion. За время в лабе я опубликовал кучу статей на топовых конфах. В перерывах между статьями я оттачивал свои эйай навыки на практике, упарываясь на Kaggle соревнованиях (я очень азартный тип в этом плане) – добрался до Top45 в мировом рейтинге с несколькими золотыми медалями. Больше про меня есть в этом посте и по тегам #personal и #мойпуть. [Если что, то я на фотке слева]
Подборка личных постов:
▪️Рассказ о том, как я вкатился в AI/ML
▪️Откуда AI хайп и как было, когда я начинал свое PhD
▪️Видео-интервью со мной
▪️Вот здесь делюсь личной радостью, ведь мы завезли диффузию в инсту,
▪️На основе emu, которую лично я оптимизировал, чтоб вот быстро и чётко
▪️Еще про то как мы сделали и ускорили генеративные стикеры для инсты, WhatsApp и FB Messenger.
▪️Про наш громкий релиз Imagine Flash, риалтайм генерацию картинок – проект, который я вел.
▪️Моя статья об ускорении диффузии с помощью кеширования, без потери качества конечно же.
▪️Как я приделывал ноги Аватарам в метаверсе [ч1, ч2], пока работа в Meta Reality Labs.
▪️Пост-апдейт и про, то как я недавно стал стафом в Meta GenAI (ну вы поняли).
Из еще почитать:
▪️Пост про грейды в бигтехе [ч1, ч2]. Все же в курсе, что сеньор это еще не все?:)
▪️Список книг для изучения ML в 2024.
▪️Гайд по ускорению диффузии [ч1, ч2], так сказать полевой опыт.
▪️Разбор того, как дистиллировали sd3 в 4 шага, который репостнул
▪️Список лекций и туториалов про 3D Human Understanding от топовых ученых из этой сферы.
▪️Лонгрид про парижский стартап Mistral и мое знакомство с фаундером.
▪️Пост про GR00T, модельку от nvidia, которая может стать chatgpt моментом в робототехнике.
▪️Еще вот про те самые чаевые в $200 для LMM и финальный список всех трюков, чтобы вставить в промпт по умолчанию.
Недавно запустился еженедельный #дайджест с кратким обзором новостей.
А также в ленте можно найти 1000 и 1 разбор свежих пейперов с мои авторитетным мнением, еще есть рубрика #ликбез с разбором базовых тем и #карьера с моими мыслями/байками по карьере в AI/ML.
Ну что, поздравляю всех новоприбывших! Обнял ❤️
@ai_newz
Telegram
эйай ньюз
Словился со своим кентом Яном ЛеКуном на ICCV.
#personal
@ai_newz
#personal
@ai_newz
This media is not supported in your browser
VIEW IN TELEGRAM