Hibou - это новое семейство фундаментальных ViT-моделей, специально разработанных для работы с цифровыми изображениями патологий тканей.
Hibou использует возможности самоконтролируемого обучения (self-supervised learning) - метода, при котором модель учится на огромном количестве немаркированных данных. Это особенно ценно для патологии, где аннотированные наборы данных часто скудны и дороги в создании.
Обучаясь на большом собственном наборе данных из более чем 1 миллиона изображений препаратов с различными типами тканей и методами окрашивания, модели Hibou научились извлекать надежные и обобщаемые признаки.
Представлено три модели: Hibou-B, Hibou-L и CellVit-Hibou-L:
Они созданы на фреймворке DINOv2 на специальном наборе аугментированных данных, адаптированных для лучшего обобщения (случайные вращения, перевороты, дрожание цвета и технику вариативного окрашивания тканей RandStainNA)
Семейство Hibou достиглj SOTA-результатов в задачах классификации на фрагментарном уровне, продемонстрировав способность точно классифицировать различные типы тканей и выявлять тонкие аномалии.
@ai_machinelearning_big_data
#AI #HIBOU #ViT #ML #Histopathology
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍25❤10🔥5🦄1