227K subscribers
3.8K photos
632 videos
17 files
4.45K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
✔️ Учёные Яндекса, НИУ ВШЭ,MIT, ISTA и KAUST разработали новый метод сжатия LLM без использования данных

Недавно был представлен HIGGS (Hadamard Incoherence with Gaussian MSE-optimal GridS) — data-free метод квантизации, который позволяет запускать большие языковые модели локально, за минуты, без GPU.

🔥 Особенности:
🟢Работает без обучающих данных (data-free)
🟢Квантизует даже модели масштаба DeepSeek R1 (671B) и Llama 4 Maverick (400B)
🟢Полностью open-source

📈 Результаты:
🟠Лучшее соотношение качество / размер среди всех data-free методов (NF4, HQQ и др.)
🟠Проверено на Llama 3, Qwen2.5
🟠Статья принята на NAACL 2025

Применение:
▶️Прототипирование без серверов и долгих калибровок
▶️Демократизация доступа к LLM
▶️Подходит для стартапов, исследователей, независимых лабораторий, образовательных и ограниченных сред

🛠 Установка:
pip install flute-kernel

🌟 Пример:
python 
from transformers import AutoModelForCausalLM, AutoTokenizer, HiggsConfig

model = AutoModelForCausalLM.from_pretrained(
"google/gemma-2-9b-it",
quantization_config=HiggsConfig(bits=4),
device_map="auto",
)


🟡Paper
🟡Hugging Face
🟡GitHub

@ai_machinelearning_big_data

#quantization #LLM #opensource #HIGGS #ai
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍118🔥3932🥱8👏2