На GTC 2025 NVIDIA представила новую серию «персональных суперкомпьютеров с ИИ», построенных на платформе Grace Blackwell - DGX Spark и DGX Station. На них пользователи смогут создавать прототипы, настраивать и запускать модели ИИ.
DGX Spark использует GB10 Grace Blackwell с вычислительной мощностью до 100 трлн. операций в секунду. DGX Station получила чип GB300 Grace Blackwell и 784 ГБ памяти. Spark уже доступен к предзаказу, а Station, как ожидается, будет выпущена в течение этого года.
nvidianews.nvidia.com
Цена $150 за миллион токенов на вход и $600 на выход. Что примерно в 270 раз дороже DeepSeek-R1.
В приложении Google Gemini появилась новая функция «Холст», которая предоставляет интерактивное пространство для редактирования текста в реальном времени, позволяя создавать черновики и экспортировать их в Google Docs. Он также может генерировать и просматривать код HTML/React для упрощения дизайна веб-сайта.
Помимо "Холста" была запущена функция "текст-в-аудио", которая может обобщать загруженный текст из файлов в аудиоформате и имитировать обсуждение двух ИИ-ведущих так же, как это реализовано в NotebookLM. В настоящее время поддерживается только английский язык, но обещают, что в будущем появится мультиязычность.
9to5google.com
NVIDIA анонсировала выпуск профессиональной серии видеокарт для ИИ, 3D и научных исследований. В линейке RTX PRO 6000 будет 3 версии: Workstation Edition в дизайне RTX 5090, Server Edition с пассивным радиатором охлаждения для ЦОДов и Max-Q Edition с системой воздушного охлаждения турбинного типа для мульти-GPU решений.
Все три версии получат 96 ГБ G7 ECC VRAM, чипы GB202 и 24064 CUDA-ядер. Энергопотребление у Workstation Edition и Server Edition - 600 Вт, а у Max-Q Edition - 300 Вт. Дата начала продаж: апрель-май 2025 года, стоимость в анонсе не раскрывалась.
theverge.com
Компания Илона Маска совершила первую крупную сделку, поглотив стартап Hotshot, известный разработкой text-to-video моделей. Как заявил Маск в соцсети X, вскоре пользователей ждут «крутые ИИ-видео» — вероятно, благодаря интеграции технологий Hotshot в экосистему xAI.
Hotshot был основан в 2017 году и изначально создавал инструменты для редактирования фото на базе ИИ, но позже переключился на генерацию видео. За 2 года команда разработала 3 фундаментальные модели: Hotshot-XL, Hotshot Act One и Hotshot, которые позволяют превращать текстовые описания в реалистичные ролики. Финансовые условия сделки не раскрыты, однако известно, что стартап получит доступ к кластеру Colossus — мощной инфраструктуре xAI с 200 000 GPU NVIDIA H100.
analyticsindiamag.com
Deloitte представила Zora AI — ИИ-платформу, которая объединяет агентов для автоматизации сложных бизнес-процессов. Решение, построенное на моделях Llama Nemotron с функциями анализа и рассуждений, способно автономно выполнять задачи в финансах, HR, логистике и других сферах.
Платформа автоматизирует моделирование сценариев, анализ рынка и управление расходами, что подтверждает внутренний опыт Deloitte: автоматизация процессов снизила затраты на 25%, а продуктивность команды выросла на 40%.
deloitte.com
Обучена на 100 тыс. часов аудио. На выходе получается естественная и эмоциональная речь.
HF
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍60🔥16❤12🥰2🙊2
Microsoft Research представила KBLaM - архитектуру, которая решает ключевую проблему LLM — добавление новых внешних знаний. В отличие от традиционных методов файнтюна и RAG, KBLaM кодирует новые для LLM структурированные данные в виде векторных пар «ключ-значение», встраивая их напрямую в слои внимания модели. Это позволяет избежать дорогостоящего дообучения и построение дополнительных модулей, сохраняя линейную масштабируемость даже для баз знаний в 10 000 триплетов.
В KBLaM триплет — это структурированный элемент знания, состоящий из трех компонентов: сущности, свойства и значения. Например, в утверждении «Москва — столица России» сущностью выступает «Москва», свойством — «столица», а значением — «Россия».
В основе KBLaM - «прямоугольный механизм внимания»: языковые токены взаимодействуют с токенами знаний, но не наоборот. Такая структура сокращает вычислительные затраты до линейных, позволяя обрабатывать эквивалент 200 тыс. токенов на одном GPU. При этом модель динамически обновляет знания без пересчёта всей базы — достаточно изменить один триплет.
Эксперименты с KBLaM показали, что он не только эффективен, но и прозрачен: веса внимания визуализируют, какие факты использует модель. Например, при запросе о медицинском диагнозе высокие оценки внимания к соответствующим триплетам снижают риск «галлюцинаций», при этом, если ответ на запрос лежит вне базы знаний, модель отказывается на него отвечать.
Как заявляют авторы, KBLaM — не просто шаг к умным LLM, а мост между обученными на базовых знаниях моделями и реальным миром, где знания постоянно обновляются.
В опубликованном на Github коде для применения KBLaM поддерживаются модели с HF:
и эмбединги для генерации базы знаний:
⚠️ Чтобы добавить поддержку других моделей, необходимо отредактировать скрипты обработки моделей и включить в них адаптер, подобный
llama_model.py
в src/kblam/models
.@ai_machinelearning_big_data
#AI #ML #LLM #MicrosoftResearch #KBLaM
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥81👍18❤17🤝2
Разработчики уменьшили количество дефектов и улучшили генерацию текста на изображениях. Модели стали чётче следовать инструкциям в промтах. Впервые применили VLM для оценки качества работы нейросети. Визуально-лингвистическая модель проверяла множество изображений на соответствие заданным промтам. Например, действительно ли на картинке присутствовали все заданные пользователем элементы.
Тесты показывают превосходство YandexART 2.5 над Midjourney 6.1 и паритет с другими SOTA-моделями.
Доступ к базовой версии — бесплатно в Шедевруме. Для Pro-версии есть подписка за 100₽/месяц.
@ai_machinelearning_big_data
#ai #ml #release
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥48👍29❤18🥱9🌭3🗿2
NVIDIA выпустила новые модели и датасет семейства Nemotron :
Архитектура модели, впервые для семейства Nemotron, использует нестандартные блоки: в части слоев внимание заменено линейными преобразованиями, а параметры FFN-слоев варьируются между блоками. Это позволило адаптировать модель для работы на одном GPU H100-80GB.
Обучение проходило в несколько этапов: от дистилляции знаний на 40 млрд. токенов до тонкой настройки с RL-алгоритмами (RPO и REINFORCE).
Результаты тестов впечатляют: в режиме «рассуждений» модель демонстрирует 96,6% pass@1 на MATH500 и 58,4% на AIME25, превосходя базовые показатели.
Модель умеет переключаться между ризонинг-режимом и типовым LLM-инференсом: для режима рассуждений рекомендуется свой системный промпт и параметры t=0,6 и Top-P=0,95.
Модель ориентирована на создание ИИ-агентов, чат-ботов, систем с расширенным контекстом и доступна через API, в веб-демо на NVIDIA Build и веса для скачивания на HuggingFace.
@ai_machinelearning_big_data
#AI #ML #LLM #NVIDIA #Nemotron
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍39❤17🔥6🥰2
Forwarded from Анализ данных (Data analysis)
🗣️ Две модели преобразования речи в текст, которые, как заявляют разработчики, превосходят Whisper.
💬 1 Новая модель TTS - которой можно указать *как* ей говорить.
Поддерживает функцию задания интонации, тона, тембра голоса и еще множества других параметров с помощью промпта.
🤖 Еще OpenAi выпустили Agents SDK, который для создания голосовых агентов.
Через час состоится стрим, где покажут примера создания голосовых агентов с новыми аудиомоделями.
📌 Потестить можно здесь: https://www.openai.fm/
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍49❤24🔥8🥰3😐1
Anthropic объявила о запуске новой функции веб-поиска для Claude. Теперь ИИ способен анализировать актуальные данные из интернета, предоставляя ответы с прямыми ссылками на источники. Это позволяет не только повысить достоверность информации, но и упростить проверку фактов.
Поиск доступен в режиме Preview для платных подписчиков в США, но в ближайшие месяцы ожидается глобальное расширение. Для активации ye;yj включить опцию в настройках профиля и начать диалог с Claude 3.7 Sonnet — система сама определит, когда требуется обращение к веб-источникам
anthropic.com
Hugging Face представила приложение HuggingSnap для iOS, использующее локальную Smolvlm2 для анализа изображений в реальном времени без подключения к сервису. В отличие от облачных аналогов, HuggingSnap обрабатывает данные исключительно на устройстве, экономя заряд устройства и гарантируя конфиденциальность. Пользователи могут получать описания объектов, сцен, текстов и сложных визуальных контекстов.
Для работы требуется iOS 18, но приложение также совместимо с macOS и Apple Vision Pro. По словам разработчиков, HuggingSnap-это пример, как локальный ИИ может стать повседневным инструментом.
techcrunch.com
Google активно тестирует интеграцию ИИ-ассистента Gemini в браузер Chrome, стремясь вывести его за рамки веб-сайта. Как выяснили исследователи, функционал разместят в верхней части окна — рядом с кнопками управления. В настройках появится возможность назначить горячие клавиши или активировать ассистент через меню. При запуске Gemini будет открываться в отдельном плавающем окне. Кроме того, Google планирует вынести иконку ассистента в системный трей — запускать его можно будет прямо с панели задач, хотя для работы потребуется активный Chrome.
Пока функция доступна лишь в экспериментальных сборках, а ее стабильность оставляет желать лучшего. Ясно одно - Google намерен конкурировать с Microsoft, предлагая свой подход к интеграции ИИ в повседневные инструменты.
windowslatest
Moonshot AI совместно с Гонконгским университетом анонсировали AudioX — универсальную модель на базе Diffusion Transformer, способную генерировать высококачественное аудио и музыку из текста, видео, изображений или их комбинаций. Главная инновация — стратегия маскирования входных данных, которая усиливает обучение кросс-модальных представлений.
Возможности AudioX: генерация любых звуков на основе текста, видео и их комбинаций (текстовый промпт к видео), восстановление "потерянной" части аудио, генерация музыки на основе текста, видео и их комбинации и "аутпейнт" существующего аудио.
Тесты AudioX: лучшая в 15+ задачах, включая генерацию звука по видео (VGGSound) и создание музыки по тексту (MusicCaps). На FAD и KL-дивергенции модель показала улучшение на 12–35% против Tango 2 и AudioLDM.
Веса и код - coming soon.
zeyuet.github
Microsoft Research представил Claimify — систему, которая решает проблему недостоверных ответов ИИ, извлекая из текстов только верифицируемые утверждения. Метод основан принципах: исключение субъективных суждений, сохранение критического контекста, устранение двусмысленностей, самостоятельность утверждений и др. Результаты тестов показывают, что 99% утверждений, извлечённых Claimify, полностью соответствуют исходному контексту.
microsoft
Это первая модель, работающая а реальном времени: 60+ mAP на COCO. SOTA на бенчмарке RF100-VLRF-DETR.
Github
Nvidia
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍77❤18🔥7😍6🤓2
ByteDance опубликовала техотчет и код проекта DAPO — RL-алгоритма для больших языковых моделей, который смог преодолеть ограничения классических методов: коллапс энтропии (PPO и GRPO), зашумление из-за отброса длинных ответов, "мертвые зоны" в данных (группы ответов с одинаковым вознаграждением) и жесткая привязка к KL-дивергенции (традиционный RLHF).
DAPO включил в себя сразу 4 инновационных метода:
Экспериментально обученная с применением DAPO Qwen2.5-32B достигла рекордных 50 баллов на тесте AIME 2024, обойдя DeepSeek-R1-Zero-Qwen-32B (47 баллов) при 2х меньшем числе шагов обучения, а отказ от штрафа за расхождение Кульбака-Лейблера позволил целевой модели свободнее развивать сложные цепочки рассуждений.
DAPO, помимо опенсорсной доступности а репозитории на Github, интегрирован в фреймворк verl, а мониторинг поможет отследать ключевые метрики — длину ответов, динамику наград и энтропию.
Веса тестовой Qwen2.5-32B и, возможно, других базовых моделей, обученных с DAPO разработчики обещают опубликовать в ближайшем будущем. Попробовать обучение алгоритмом можно специально подготовленным скриптом, с опубликованными вместе датасетами DAPO-Math-17k и валидационным сетом AIME 2024.
@ai_machinelearning_big_data
#AI #ML #LLM #RL #ByteDance #DAPO
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍46🔥21❤8🤓4🤔3👾3💅1
This media is not supported in your browser
VIEW IN TELEGRAM
Unitree постоянно совершенствуют алгоритмы управления, позволяя роботу обучаться и осваивать всё более сложные и точные движения.
Модель G1 обладает 23 степенями свободы, это гарантирует исключительную устойчивость и координацию.
Робот оснащён 3D-лидаром, камерой глубины и комплектом микрофонов с функцией шумоподавления для надёжного распознавания голосовых команд.
Его «сердцем» является 8-ядерный процессор, обеспечивающий такую высокую манёвренность ❤️
G1 оборудован легко заменяемой батареей ёмкостью 9000 мА·ч, что позволяет ему работать до двух часов, с возможностью оперативной замены источника питания. Максимальная скорость робота достигает 7,2 км/ч.
При росте 1,32 метра и весе 35 кг, гуманоидный робот может компактно складываться, занимая пространство в контейнере размером всего 69 × 44 × 30 см.
На этапе первичного обучения G1 использует симулятор Isaac от Nvidia, который с помощью методов обучения с подкреплением помогает осваивать сложнейшие алгоритмы поведения в контролируемой цифровой среде.
Затем отработанные действия плавно переносятся в физическую модель с использованием процесса Sim2Real, что обеспечивает высокую точность выполнения движений в реальном мире.
Unitree выпустила открытый датаяет, предназначенный для повышения эффективности управления и координации движений человекоподобных роботов.
Набор данных, созданный с применением технологии захвата движения LAFAN1, полностью совместим с гуманоидными системами Unitree.
Он включает усовершенствованный алгоритм перенаправления, который оптимизирует планирование движений через интерактивную обработку и обратную кинематику с учётом ограничений позы, сочленений суставов и параметров скорости.
Кстати, цена такого робота начинается от 16к$
https://www.unitree.com/g1
@ai_machinelearning_big_data
#ai #robots #news #unitree #ArtificialIntelligence #HumanoidRobot
Please open Telegram to view this post
VIEW IN TELEGRAM
👍86🔥47❤16😨6
Создатель Vision Pro, Майк Роквелл возглавит разработку Siri, перейдя под управление Крэга Федериги, главы софтверного подразделения. Джон Джаннандреа, ранее курировавший Siri, сохранит контроль над исследованиями в области ИИ, но потеряет влияние на ключевой потребительский продукт.
CEO APPLE Тим Кук очень недоволен динамикой выполнения планов ИИ. Некоторые функции, изначально запланированные на июнь 2024 года, еще не реализованы - полное обновление Siri станет возможным с выходом iOS 20 в 2027 году.
bloomberg.com
Solidigm представила первое в мире решение eSSD с жидкостным охлаждением для серверов — D7-PS1010 E1.S, которое открывает перспективу для будущих серверов с полностью жидкостным охлаждением. Традиционные решения прямого жидкостного охлаждения eSSD не могут адекватно охлаждать обе стороны накопителя и не поддерживают горячую замену.
Разработка Solidigm преодолевает эти ограничения, устраняя необходимость в конструкциях стоек высотой 1U и сокращая расходы на кондиционирование и охлаждение воздуха в ЦОДах. Продукт будет выпущен во второй половине этого года.
tomshardware.com
Cloudflare представила новый инструмент «AI Labyrinth», нацеленный усложнить жизнь автоматизированным системам, сканирующим веб-ресурсы. Вместо традиционной блокировки нежелательных запросов "Лабиринт" генерирует с помощью ИИ правдоподобные, но бессмысленные для обучения модели страницы. В результате - краулеры тратят ресурсы на сбор «мусорных» данных, не нарушая при этом репутацию сайтов или их SEO-показатели.
Новый функционал уже доступен клиентам платформы в панели управления. Эксперты отмечают, что подобные технологии могут спровоцировать «гонку вооружений» между защитниками и злоумышленниками, но Cloudflare намерена продолжать совершенствовать систему, делая её элементы незаметнее для алгоритмов.
theregister.com
Oracle анонсировала AI Agent Studio — платформу для разработки, внедрения и управления ИИ-агентами в рамках облачного пакета Fusion Applications. Решение позволяет клиентам и партнерам создавать кастомных агентов, оптимизирующих бизнес-задачи: от обработки заказов до планирования ресурсов.
Студия предлагает выбор языковых моделей (включая Llama и Cohere), инструменты тестирования и встроенную безопасность, для соответствие корпоративным стандартам. Агенты могут работать как автономно, так и в командах, с контролем этапов через утверждения. Подробности — на oracle.com/applications
oracle.com
Исследователи из MIT и NVIDIA представили HART - метод, объединяющий преимущества авторегрессионных и диффузионных моделей для генерации изображений. В отличие от медленных диффузионных систем (например, DALL-E), требующих 30+ итераций для денойза, и быстрых, но неточных авторегрессионных алгоритмов, HART использует гибридную архитектуру. Авторегрессионная модель формирует общую структуру изображения, а компактная диффузионная — дорабатывает детали за 8 шагов, компенсируя потери данных через остаточные токены.
Благодаря этому, HART генерирует изображения, сопоставимые по качеству с моделями на 2 млрд. параметров, но в 9 раз быстрее и с экономией 31% ресурсов.. В будущем HART планируют адаптировать для видео, аудио и мультимодальных задач, усилив совместимость с LLM. Проект поддержаkb MIT-IBM Watson AI Lab, Amazon Science Hub и NSF.
news.mit
AlexNet — это ИИ для распознавания изображений, перевернувшая мир в 2012 году.
Ее разработали Илья Суцкевер, Алекс Крижевский и лауреат Нобелевской премии Джеффри Хинтон.
По данным Google Scholar, статья об архитектуре AlexNet была процитирована свыше 170 тысяч раз, что делает её одной из самых часто цитируемых работ в истории информатики.
GitHub
@ai_machinelearning
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍61❤33🔥14🤨6💘2🥰1🤔1