288K subscribers
3.98K photos
691 videos
17 files
4.56K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
🌟 Moirai-MoE: фундаментальная модель временных рядов на основе разреженной смеси экспертов.

Фундаментальные модели временных рядов продемонстрировали впечатляющие результаты в задачах прогнозирования без предварительной настройки. Однако эффективное унифицированное обучение на временных рядах остается открытой проблемой. Существующие методы используют определенный уровень специализации модели, чтобы учесть высокую гетерогенность данных временных рядов.

Moirai-MoE - модель для прогнозирования временных рядов от Salesforce AI Research, использующая один входной/выходной проекционный слой, при этом задача моделирования различных паттернов временных рядов делегируется разреженной смеси экспертов (MoE) в трансформерах.

Moirai-MoE достигает специализации, управляемой данными, и работает на уровне токенов. Для повышения эффективности обучения Moirai-MoE использует целевую функцию только декодера, что позволяет параллельно обучать модель на различных контекстных длинах.

Moirai-MoE была оценена на 39 наборах данных в сценариях прогнозирования внутри и вне распределения. Результаты подтверждают превосходство Moirai-MoE над существующими фундаментальными моделями, включая TimesFM, Chronos и Moirai.

В частности, Moirai-MoE превосходит свою аналогичную модель Moirai на 17% при том же размере модели и превосходит другие фундаментальные модели временных рядов с до 65 раз меньшим количеством активных параметров.

В открытый доступ на HF опубликованы 2 модели:

🟢Moirai-MoE-1.0-R-Small, 11 млн. активных параметров, 117 млн. общих;

🟢Moirai-MoE-1.0-R-Base, 86 млн. активных параметров, 935 млн. общих.


▶️Пример использования Moirai-MoE для составления прогнозов:

import matplotlib.pyplot as plt
from gluonts.dataset.repository import dataset_recipes

from uni2ts.eval_util.data import get_gluonts_test_dataset
from uni2ts.eval_util.plot import plot_next_multi
from uni2ts.model.moirai import MoiraiForecast, MoiraiMoEModule

SIZE = "small" # model size: choose from {'small', 'base'}
CTX = 1000 # context length: any positive integer
BSZ = 32 # batch size: any positive integer

# Load dataset
test_data, metadata = get_gluonts_test_dataset(
"electricity", prediction_length=None, regenerate=False
)
# Uncomment the below line to find other datasets
# print(sorted(dataset_recipes.keys()))

# Prepare model
model = MoiraiForecast(
module=MoiraiMoEModule.from_pretrained(
f"Salesforce/moirai-moe-1.0-R-{SIZE}",
),
mode="autoregressive",
prediction_length=metadata.prediction_length,
context_length=CTX,
patch_size=16,
num_samples=100,
target_dim=metadata.target_dim,
feat_dynamic_real_dim=metadata.feat_dynamic_real_dim,
past_feat_dynamic_real_dim=metadata.past_feat_dynamic_real_dim,
)

predictor = model.create_predictor(batch_size=BSZ)
forecasts = predictor.predict(test_data.input)

input_it = iter(test_data.input)
label_it = iter(test_data.label)
forecast_it = iter(forecasts)

# Visualize forecasts
fig, axes = plt.subplots(nrows=2, ncols=3, figsize=(25, 10))
plot_next_multi(
axes,
input_it,
label_it,
forecast_it,
context_length=200,
intervals=(0.5, 0.9),
dim=None,
name="pred",
show_label=True,
)



🟡Страница проекта
🟡Коллекция на HF
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #Forecast #MoiraiMoE #SalesforceAI
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍248🔥7
✔️ FrontierMath: набор тестов по математике, который ставит в тупик модели ИИ и кандидатов наук.

Epoch AI представила FrontierMath, математический тест, который содержит сотни задач экспертного уровня. Claude 3.5 Sonnet, GPT-4o, o1-preview и Gemini 1.5 Pro показали крайне низкие результаты - менее 2%, а для решения задач теста математикам-специалистам обычно требуются часы или дни.

Набор задач в FrontierMath остается закрытым и неопубликованным, чтобы предотвратить загрязнение данных. Задачи охватывают несколько математических дисциплин, от вычислительной теории чисел до абстрактной алгебраической геометрии.
Epoch AI планирует проводить регулярную оценку моделей ИИ с помощью теста, одновременно расширяя набор задач.
epoch.ai

✔️ Лаборатория искусственного интеллекта на защите людей искусства от генеративного ИИ.

Ученые из SAND Lab Чикагского университета разработали два инструмента, Glaze и Nightshade, которые защищают цифровое искусство от несанкционированного использования в обучении моделей.

Glaze изменяет изображения таким образом, чтобы алгоритмы ИИ не могли распознать стиль художника, а Nightshade добавляет в изображения «яд», нарушающий работу моделей ИИ. Оба инструмента были загружены миллионы раз и используются художниками для защиты своих работ от копирования и использования без их согласия.

Nightshade может нанести серьезный ущерб моделям ИИ, заставив их интерпретировать изображения неправильно, например, принимать собак за кошек. Разработчики инструментов надеются, что они заставят компании, занимающиеся ИИ, вести переговоры с художниками о лицензировании и справедливой компенсации.
technologyreview.com

✔️ OpenAI представит план развития инфраструктуры ИИ в США для конкуренции с Китаем.

OpenAI разработала план развития инфраструктуры ИИ в США, который включает создание специальных экономических зон для ИИ, использование опыта ВМС США в области ядерной энергетики и финансирование государственных проектов частными инвесторами. План также предусматривает создание североамериканского альянса по ИИ для конкуренции с китайскими инициативами.

Компания считает, что инвестиции в ИИ в США приведут к созданию десятков тысяч рабочих мест, росту ВВП, модернизации энергосистемы, появлению новых заводов по производству чипов и привлечению миллиардов долларов инвестиций из глобальных фондов.

В плане также прогнозируется принятие закона о национальной транспортной магистрали, который позволит расширить строительство линий электропередач, волоконно-оптических сетей и газопроводов.
cnbc.com

✔️ YouTube тестирует функцию ремиксов песен с помощью ИИ.

YouTube тестирует новую функцию в наборе инструментов Dream Track, которая позволяет авторам ремиксовать треки с помощью опции «Restyle a track» и описать текстом, как они хотят изменить стиль песни. Restyle a track сгенерирует 30-секундный фрагмент, который авторы смогут использовать в Shorts.

Ремикшированные фрагменты будут содержать информацию об оригинальной песне на странице Shorts audio pivot. Ремиксы также будут иметь соответствующую метку, указывающую на то, что трек был изменен с помощью ИИ.
techcrunch.com

✔️ Сверхчеловеческое зрение для роботов благодаря ИИ и радиоволнам.

Исследователи из Университета Пенсильвании разработали систему PanoRadar, которая использует радиоволны и ИИ, чтобы обеспечить роботов трехмерным зрением, подобным LiDAR, но по более низкой цене.

PanoRadar работает как маяк, вращаясь и излучая радиоволны, отражения которых обрабатываются ИИ для создания точного 3D-изображения окружающей среды. Эта технология позволяет роботам видеть сквозь препятствия, дым и туман. PanoRadar использует алгоритмы машинного обучения для интерпретации сложных сигналов радиоволн и достижения высокого разрешения, сравнимого с LiDAR.
interestingengineering.com

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍269🥰7🔥2
⚡️ JanusFlow: унифицированная MMLM понимания и генерации изображений от DeepSeekAI.

JanusFlow - уникальная комбинация LLM с Rectified Flow и SDXL-VAE для задач понимания и генерации изображений.

Архитектура JanusFlow построена на улучшенной версии DeepSeek-LLM-1.3B, дополненной двумя специализированными энкодерами изображений: SigLIP для задач понимания и ConvNeXt для задач генерации. Разделение энкодеров предотвращает интерференцию задач и повышает эффективность модели.

JanusFlow обучалась в 3 этапа. На первом этапе адаптировались линейные слои, энкодер и декодер генерации.

На втором этапе - унифицированное предварительное обучение всей модели, за исключением визуального энкодера.

На третьем этапе - SFT с использованием инструкций, диалогов и примеров генерации изображений.

В тестах генерации изображений MJHQ FID-30k, GenEval и DPG-Bench, JanusFlow превосходит SD1.5 и SDXL. В тестах понимания MMBench, SeedBench и GQA, JanusFlow превосходит LLaVA-v1.5 и Qwen-VL-Chat.

Локальный запуск возможен в CLI на Transformers и с webUI на Gradio. Примеры CLI-инференса для задач понимания и генерации можно найти в репозитории проекта.

▶️Установка и запуск с GradioUI:

# install the necessary dependencies
pip install -e .
pip install diffusers[torch]

# run local gradio demo
pip install -e .[gradio]

python demo/app_janusflow.py


📌Лицензирование кода : MIT License.

📌Лицензирование модели: DeepSeek Model License.


🟡Модель
🟡Arxiv
🟡Demo
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #MMLM #Deepseek #JanusFlow
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍215🔥5👾2🎉1
✔️ Nous Research запустил бета-версию Forge Reasoning API.

Forge Reasoning API позволяет улучшить возможности популярных LLM, добавив интерпретатор кода и расширенные возможности рассуждений. API использует три архитектуры: поиск по древу Монте-Карло (MCTS), цепочка кода (CoC) и смесь агентов (MoA).

Forge совместим с Hermes 3, Claude Sonnet 3.5, Gemini и GPT 4 и может комбинировать несколько языковых моделей для повышения разнообразия выходных данных. Beta-тестирование API будет сосредоточено на тестировании архитектуры системы рассуждений.
nousresearch.com

✔️ Google устраняет уязвимости в Vertex AI, которые могли привести к утечке моделей ИИ.

Уязвимости, обнаруженные Palo Alto Networks Unit 42, позволяли злоумышленникам получать несанкционированный доступ к данным и извлекать корпоративные модели из системы.

Первая уязвимость, связанная с функцией "пользовательские задания", позволяла повышать привилегии и получать доступ ко всем сервисам данных в проекте. Вторая уязвимость, связанная с функцией "вредоносные модели", позволяла развертывать вредоносные модели и получать доступ ко всем другим настроенным моделям, что создавало серьезный риск утечки конфиденциальных данных.
Google уже установила исправления для устранения этих уязвимостей.
darkreading.com

✔️ JetBrains выпустила обновление 2024.3 для AI Assistant и IDEs.

AI Assistant 2024.3 теперь поддерживает модели Gemini, предоставляя пользователям возможность выбирать между моделями Gemini, OpenAI или локальными моделями. Ассистент также предлагает улучшенное автозавершение кода, расширенное управление контекстом и встроенную генерацию подсказок.

Обновления коснулись IDE JetBrains: PyCharm (добавлена функция AI-внутристроковых подсказок) , WebStorm (реализована улучшенная навигация по компонентам), GoLand (добавлены многострочное завершение, новая функция встроенной подсказки и новые языковые возможности из последних релизов Go), PhpStorm( новые проверки и быстрые исправления для обновления до PHP 8.4) и RubyMine(поддержка Rail 8, более быстрое завершение кода с учетом контекста и улучшенная интеграция модульных тестов).
sdtimes.com

✔️ Red Hat приобретает технологию для снижения стоимости машинного обучения.

Red Hat объявила о намерении приобрести Neural Magic, разработчика проекта vLLM с открытым исходным кодом. Цель приобретения в том, чтобы Red Hat и ее материнская компания IBM могли снизить барьер для входа организаций, желающих запускать рабочие нагрузки машинного обучения без необходимости развертывания серверов, оснащенных GPU.

Neural Magic разработала способ запуска алгоритмов машинного обучения без GPU. Вместо этого компания методы обрезки и квантования для оптимизации моделей, позволяя им работать на доступных процессорах без ущерба для производительности.
computerweekly.com

✔️ Франсуа Шолле покидает Google.

Французский разработчик Франсуа Шолле, создатель Keras, покидает Google после почти 10 лет работы. Keras лежит в основе ряда технологических продуктов: беспилотные автомобили Waymo, рекомендательные системы на YouTube, Netflix и Spotify.

В 2019 году Шолле опубликовал тест Abstraction and Reasoning Corpus for Artificial General Intelligence (ARC-AGI), который измеряет способность систем ИИ решать новые задачи на рассуждение. Шолле неоднократно утверждал, что подход, принятый многими крупными лабораториями, разрабатывающими ИИ (внедрение все большего количества данных и вычислительных ресурсов в модели), не позволит достичь ИИ, который будет таким же «умным», как люди.

34-летний Франсуа сообщил в посте X, что он создает новую компанию вместе с «другом», но отказался раскрывать подробности.
techcrunch.com

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍29🔥93🥰1
🌟 Athene-V2: диалоговая и агентная модели от Nexusflow с 72 млрд. параметров.

Nexusflow представила семейство Athene-V2 из двух специализированных моделей: Athene-V2-Chat-72B, оптимизированную для чат-диалогов, и Athene-V2-Agent-72B, предназначенную для работы в качестве агента.

Обе модели построены на базе Qwen 2.5-72B-Instruct. Ключевая особенность Athene-V2 - концепция "границы Парето" в постобработке LLM.

По мере обучения модели с помощью RLHF на качественных данных достигается оптимальный баланс между метриками производительности, формируя "границу Парето". Дальнейшее улучшение отдельных характеристик становится возможным только за счет снижения других показателей.

Athene-V2-Chat-72B демонстрирует конкурентоспособные результаты по сравнению с GPT-4o в бенчмарках, превосходя его в задачах чата (Arena-Hard), завершения кода (bigcode-bench-hard) и математических задачах (MATH).

Athene-V2-Agent-72B превосходит GPT-4o в бенчмарках Nexus-V2, ориентированных на сложные сценарии вызова функций в корпоративной среде.

Athene-V2-Chat-72B использует шаблон чата Qwen2.5-72B-Instruct. Пример инференса с помощью библиотеки Transformers.

Athene-V2-Agent-72B можно использовать в любой совместимой с OpenAI API среде с помощью docker-образа VLLM. Примеры запуска погодного и RAG-агента.

⚠️ Athene-V2-Agent использует уникальный стиль промптов, который включен в docker-образ, поскольку исполняемые вызовы извлекаются из сгенерированного планирования модели.
Использование шаблона чата HuggingFace приведет к неоптимальным результатам в случае использования Athene-V2-Agent .

▶️На HF доступны неофициальные квантованные версии в формате GGUF c диапазоном разрядности от 3 до 8 bit:

🟠Athene-V2-Chat-72B

🟠Athene-V2-Agent-72B


📌Лицензирование: Nexusflow Research License


🟡Страница проекта
🟡Набор моделей
🟡Сообщество в Discord


@ai_machinelearning_big_data

#AI #ML #LLM #AtheneV2 #Nexusflow
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥16👍95
🌟 LLaMA-Mesh: метод генерации 3D-мешей с помощью LLM.

LLaMA-Mesh - метод, разработанный NVIDIA Labs, позволяющий генерировать 3D-модели с помощью текстовых инструкций, используя LLM. В отличие от других методов, LLaMA-Mesh представляет координаты вершин и определения граней 3D-сеток в виде простого текста, что позволяет напрямую интегрировать их с LLM без расширения словаря, минимизируя дополнительные затраты на обучение и позволяя использовать знания, которые уже имеют LLM.

Метод основан на файнтюне LLaMA-3.1-8B-Instruct на специальном наборе данных., который состоит из пар "текст-3D" и интерактивных диалогов, содержащих текст и 3D-модели.

В результате этого обучения, LLaMA-Mesh получает способность генерировать высококачественные 3D-сетки с различной топологией, сопоставимые по качеству с моделями, обученными с нуля, при этом сохраняя языковые способности, обеспечивая понимание сложных инструкций и ведения контекстуально-зависимых диалогов.

Оценка LLaMA-Mesh проводилась на качественных и количественных экспериментах.

Результаты качественных тестов демонстрируют высокую точность, качество и разнообразие сгенерированных 3D-моделей, а также сохраненные языковые возможности модели.

Количественные тесты в бенчмарках MMLU, PIQA, HellaSwag и GSM8K подтвердили сохранение языковых способностей, сравнимые с фундаментальными моделями LLaMA.

⚠️ Код и предварительно обученные веса обещают опубликовать в ближайшее время.


🟡Страница проекта
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #3DGen #LlamaMesh #NVIDIA
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥227👍7😁2🥰1
✔️ The New York Times обвиняет OpenAI в попытке заработать на судебном разбирательстве.

NYT утверждает, что OpenAI предложила протокол проверки, ограничивающий количество запросов, которые их эксперт может сделать через API, суммой в 15 000 долларов. По словам NYT, для получения необходимых доказательств нарушения авторских прав, им потребуется кредитов на сумму 800 тыс. долларов, что, как утверждается, значительно превышает фактические затраты OpenAI.

OpenAI защищает установленный лимит, утверждая, что он необходим для снижения нагрузки на компанию. Исход этого судебного спора может иметь последствия для будущих дел, связанных с проверкой моделей ИИ.
arstechnica.com

✔️ Фильм, сценарий которого написан ИИ, открывает фестиваль IDFA.

Фильм "О герое" режиссера Петра Виневича, сценарий которого написан искусственным интеллектом, обученным на работах Вернера Херцога, открывает Международный фестиваль документального кино в Амстердаме (IDFA).

В фильме снимаются Вики Крипс и Стивен Фрай, а Вернер Херцог выступает в роли рассказчика. Фильм исследует роль технологий в кинопроизводстве и ставит вопросы об оригинальности, аутентичности и душе в эпоху ИИ. Виневич создал фильм, используя программное обеспечение Kaspar, которое обучалось на обширной фильмографии и текстах Херцога.

Процесс написания сценария был долгим и сложным: сначала ИИ генерировал поток текста, который затем редактировался Виневичем и сценаристкой Анной Джул.
hollywoodreporter.com

✔️ Hyundai разрабатывает электромобиль с ИИ, чтобы не отставать от конкурентов в Китае.

В следующем году Hyundai выпустит свой первый электромобиль с ИИ, разработанный специально для китайского рынка. Новая модель будет оснащена системой DriveGPT от китайского стартапа Haomo, которая вдохновлена ChatGPT от OpenAI.

Система способна к самообучению в режиме реального времени, оптимизируя процесс принятия решений на основе анализа данных о дорожном движении. Уровень автономного вождения новой модели будет находиться между 2 и 2.5, что сравнимо с автопилотом Tesla.

Hyundai надеется, что новый электромобиль поможет увеличить продажи на китайском рынке электромобилей, где BYD лидирует с долей рынка 32,9%.
electrek.co

✔️ Apple M4 Max транскрибирует аудио в 2 раза быстрее, чем RTX A5000, потребляя при этом в 8 раз меньше энергии.

В пользовательском тесте, проведенном Toms hardware M4 Max транскрибировал 3-х часовой аудиофайл с помощью Whisper V3 Turbo всего за 2 минуты 29 секунд, потребляя 25 Вт, в то время как RTX A5000 затратил на ту же задачу 4 минуты 33 секунды, потребляя 190 Вт.

Преимущество M4 Max объясняется наличием четырех аппаратных кодеров, включая два специализированных для ProRes, что позволяет ему эффективно обрабатывать видео и аудио. В тесте использовалась сбалансированная настройка M4 Max, а при увеличении скорости вентиляторов время транскрипции сократилось еще на 10 секунд.
tomshardware.com

✔️ Новая модель Gemini от Google возглавляет рейтинг LLM в СhatbotArena.

Последняя версия Gemini попала на вершину рейтинга Chatbot Arena, обогнав последнюю версию GPT-4o от OpenAI. Новая модель от Google DeepMind называется Gemini-Exp-1114. она сравнялась с последней версией GPT-4o, превзойдя возможности модели o1-preview reasoning от OpenAI.

Gemini-Exp-1114 пока недоступна в приложении или на веб-сайте Gemini. Получить к ней доступ можно только зарегистрировав бесплатную учетную запись Google AI Studio.
tomsguide.com

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍268🔥4
🌟 Языки программирования в 50 строк кода Python.

Репозиторий на Github c микрореализацией фундаментальных языков программирования, по мотивам серии статей "Tiny Great Languages"

Все написано на Python, код намеренно краток, чтобы не превышать ~50 строк кода для каждого языка.

Используется только стандартная библиотека Python, да и то в очень скромных пределах (sys, иногда re, редко itertool и т.д.).

▶️ Реализованы языки:

asm.py - ассемблер. Компилирует "Python-ассемблер" в байткод и выполняет его;

basic.py - бейсик. Подмножество TinyBASIC, но с настоящим редактором строк BASIC!

lisp.py - Lisp 1.5. Классика, автор - Джон Маккарти, достаточен, чтобы интерпретировать самого себя (мета-циклический интерпретатор);

apl.py - интерпретатор k/simple, написанный Артуром Уитни, представляет собой диалект языка программирования K (array processing language), который является вариантом APL.

mouse.py - язык конкатенативного программирования MOUSE, опубликованный в журнале BYTE в 1979 году.

pl0.py - переводчик с языка PL/0, автор Никлаус Вирт.

tcl.py - крошечный интерпретатор командного языка (TCL).


📌Лицензирование: MIT License.


🖥Github

#Python #TinyLanguage
Please open Telegram to view this post
VIEW IN TELEGRAM
24👍10🔥9🌚1🗿1