223K subscribers
3.83K photos
640 videos
17 files
4.46K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
🌟 BigLlama-3.1-1T-Instruct: Большая модель для тех, кому 405B не хватает.


Экспериментальная модель, размером 2ТB на основе Meta-Llama-3.1-405B-Instruct, рожденная методом passthrough в mergekit.

Для использования автор рекомендует шаблон чата Llama 3 и 4 ноды 8xH100s в FP8.
Квантование и оценка в бенчмарках - решение еще не принято.

▶️ Скачать BigLlama-3.1-1T-Instruct можно на HF


@ai_machinelearning_big_data

#LLM #ML #Ai
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥23😁105👍5👀3🗿3🦄21🙊1
Новостной дайджест

✔️AWS разработала AI-ассистента Amazon Q.

Amazon Q умеет:  генерировать точный код, проводить тестирование и отладку кода, планировать многократные шаги при разработке ПО, давать ответы на вопросы по бизнес-данным, подключаясь к хранилищам предприятия, а также лучшее в отрасли сканирование уязвимостей и оптимизацию среды AWS.
С его возможностями, сотрудники AWS теперь могут создавать приложения на корпоративных данных компании, описывая необходимый функционал естественным языком.
devopsdigest.com

✔️Сети Колмогорова-Арнольда могут навести физиков на новые гипотезы.

Ученые из MIT разработали новый способ создания нейронных сетей, который оказался более эффективным и точным, чем традиционные методы. Эти новые сети, называемые KAN, могут представлять данные о физике в более понятном и интерпретируемом виде, что может помочь ученым открыть новые законы природы.
В ходе тестирования KAN показала себя более точной и эффективной, чем традиционные нейронные сети. Например, в одной задаче KAN достигла точности 81,6% с использованием всего 200 параметров, в то время как традиционная сеть достигла точности 78% с использованием 300 000 параметров. Кроме того, исследователи смогли визуально смоделировать KAN и упростить ее до простой физической функции, которая точно повторяет ту, которая создала набор данных.
spectrum.ieee.org

✔️ИИ-модель Profluent приблизилась к точному и управляемому проектированию белков.

Компания Profluent разработала ИИ-модель - РroseLM, которая использует структурный и функциональный контекст для повышения точности и управления в проектировании дизайна белков, что используется для редактирования генов и связывания терапевтических антител.
ProseLM рассчитывает взаимодействия с не-белковыми молекулами и использует адаптерные слои для обучения, предоставляя возможность для намеренного и управляемого проектирования биотехнологических прототипов.
genengnews.com

✔️NEO Semiconductor объявляет о разработке чипа 3D X-AI: замена HBM и решение проблемы узких мест в шине данных.

Технология 3D X-AI обеспечивает 100-кратное ускорение производительности, снижение энергопотребления на 99% и восьмикратное увеличение плотности памяти благодаря использованию 300 слоев 3D DRAM с нейронными схемами. Чип может обрабатывать до 120 ТБ/с данных, значительно снижая объем передаваемых данных между HBM и GPU.
neosemic.com

✔️MIT опубликовал "Руководство по разработке стратегии AI для предприятий".

Руководство исследует текущее состояние принятия ИИ на предприятиях и предлагает стратегию для разработки плана внедрения, помогая бизнесу преодолеть диссонанс между амбициями и выполнением.
Ключевые темы: амбиции в области ИИ значительны, но лишь немногие перешли за пределы пилотных проектов; расходы на подготовку к использованию ИИ значительно увеличатся, а доступность и качество данных являются одними из ключевых аспектов для успешного внедрения ИИ.
Полный доклад доступен по ссылке.
technologyreview.com

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥21👍1562❤‍🔥2
⚡️ Mini CPM-V: Семейство MLM для работы с изображениями и видео, в том числе на портативных устройствах.

MiniCPM-V новое семейство MLLM. Набор состоит из 3 моделей и их квантованных версий в int4 и GGUF: 

MiniCPM-V 2.6: самая производительная модель в серии MiniCPM-V, построена на основе SigLip-400M и Qwen2-7B и имеет 8 миллиардов параметров. 
Эта модель улучшена новыми возможностями для понимания нескольких изображений и видео и поддерживает работу в режиме реального времени на сторонних устройствах, таких как iPad. 

🟠MiniCPM-V 2.6 (16.2 Gb)
🟠MiniCPM-V 2.6 Int4 (5.95GB)
🟠MiniCPM-V 2.6 GGUFs в 4-bit (4.68GB) и 16-bit (15.2GB)

MiniCPM-Llama3-V-2_5:  построена на основе SigLip-400M и Llama3-8B-Instruct и имеет 8 миллиардов параметров. 
Модель ориентирована на задачи OCR, производительность, надежность и поддерживает 30 языков. Она способна работать на устройствах с ограниченными ресурсами, например, на смартфоне.

🟠MiniCPM-Llama3-V 2.5 (~17GB)
🟠MiniCPM-Llama3-V 2.5 Int4 (6.16GB)
🟠MiniCPM-Llama3-V 2.5 GGUF от 2-bit до 16-bit (от 3.18Gb до 16.1 соответственно)

MiniCPM-V 2: самая легкая модель в серии MiniCPM-V с 2 миллиардами параметров. Она обрабатывает изображения с любым соотношением сторон и разрешением до 1,8 Mpx, например, 1344x1344.

🟠MiniCPM-V 2

▶️Локальный запуск c GradioUI:

# Clone this repository and navigate to the source folder:
git clone https://github.com/OpenBMB/MiniCPM-V.git
cd MiniCPM-V

# Create conda environment:
conda create -n MiniCPM-V python=3.10 -y
conda activate MiniCPM-V

#Install dependencies.
pip install -r requirements.txt

## For NVIDIA GPUs, run::
python web_demo_2.6.py --device cuda


📌Лицензирование:

🟢код - Apache-2.0;
🟠модели - свободно для любых академических исследований. Коммерция - соблюдение этого соглашения.



🟡Tech Report MiniCPM-Llama3-V 2.5
🟡Коллекция моделей на HF
🟡Demo MiniCPM-V 2.6
🟡Demo MiniCPM-Llama3-V 2.5
🟡Demo MiniCPM-V 2
🖥Github [ Stars: 8.3K | Issues: 27 | Forks: 583]


@ai_machinelearning_big_data

#AI #MLLM #ML #MiniCPM #MobileVLM
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍295🔥3
🖥 Полезные заметки по устранению неполадок в AMD MI300X и других подобных устройствах

https://github.com/stas00/ml-engineering/blob/master/compute/accelerator/amd/debug.md

А здесь большое руководству по устранению различных неполадок для NVIDIA https://github.com/stas00/ml-engineering/blob/master/compute/accelerator/nvidia/debug.md

@ai_machinelearning_big_data

#amd #NVIDIA #Troubleshooting
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥13👍105
🌟BRAG: Серия Instruct-RAG LLM.

BRAG - это серия специализированных языковых моделей, обученных для RAG-задач с текстом, таблицами и в режиме чата. Все модели ориентированы в основном на английский язык, но модели на базе Llama-3.1-8B и Qwen2-1.5b имеют наследованную поддержку мультиязычности.

В качестве базовых моделей использованы Qwen2-1.5B, Qwen2-7B-Instruct, Llama-3.1-8B-Instruct и Llama-3-8B-Instruct.

Список моделей:

🟢BRAG-Qwen2-7b-v0.1 Instruct | 7B | 128K
🟢BRAG-Llama-3.1-8b-v0.1 Instruct | 8B | 128K
🟢BRAG-Llama-3-8b-v0.1 Instruct | 8B | 8K
🟢BRAG-Qwen2-1.5b-v0.1 Instruct | 1.5B | 32K

▶️Формат промта:


messages = [
{"role": "system", "content": "You are an assistant who gives helpful, detailed, and polite answers to the user's questions based on the context with appropriate reasoning as required. Indicate when the answer cannot be found in the context."},
{"role": "user", "content": """Context: <CONTEXT INFORMATION> \n\n <USER QUERY>"""},
]


⚡️Лицензирование :  Apache-2.0



Страница проекта
Коллекция моделей на HF


@ai_machinelearning_big_data

#AI #LLM #ML #BRAG #RAG
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍246🔥6
🌟 Qwen2-Math: набор моделей для математических вычислений.

Qwen2-Math - специализированный англоязычный набор моделей на базе LLM Qwen2 для математических вычислений. Всего в релиз вошло 6 вариантов с разной плотностью параметров, от 1.5B до 72B.
Старшая модель Qwen 2-Math-72B предназначена для сложных математических вычислений и подходит для задач, требующих глубокого обучения и обширной обработки данных. Версия "Instruct" этой модели, Qwen 2-Math-72B-Instruct, получила дополнительные настройки, которые позволяют ей точно следовать инструкциям пользователя.

Список моделей на HF:

🟢Qwen2-Math-72B
🟢Qwen2-Math-72B-Instruct
🟢Qwen2-Math-7B
🟢Qwen2-Math-7B-Instruct
🟢Qwen2-Math-1.5B
🟢Qwen2-Math-1.5B-Instruct

Qwen2-Math прошли предварительное обучение на тщательно разработанном датасете, который содержит большие качественные математические веб-тексты, книги, экзаменационные вопросы и данные для предварительного обучения математике, синтезированные Qwen2.
Qwen2-Math тестировались на трех популярных англоязычных математических бенчмарках GSM8K, Math и MMLU-STEM и трех китайских математических тестах CMATH, GaoKao Math Cloze и GaoKao Math QA
Результаты показывают, что флагманская модель Qwen2-Math-72B-Instruct превосходит GPT-4o, Claude-3.5-Sonnet, Gemini-1.5-Pro и Llama-3.1-405B.

▶️Системные рекомендации по железу такие же, как для моделей семейства Qwen2-series LLM:

🟢Qwen2-Math-1.5B, BF16, Transformers, input length 6144 / 14336 / 30720 - 9 / 16 / 30 Gb GPU VRAM;
🟢Qwen2-Math-7B, BF16, Transformers, input length 6144 / 14336 / 30720 - 14 / 28 / 43 Gb GPU VRAM;
🟠Qwen2-Math-72B, BF16, Transformers, input length 6144 / 14336 / 30720 - 144 Gb x2 GPU/ 170 Gb x3 GPU / 209 Gb x3 GPU VRAM.


📌Лицензирование : Apache 2.0 для base и instruct моделей 1.5B и 7B, Tongyi Qianwen для 72B и 72B Instruct.


🟡Страница проекта
🟡Коллекция моделей на HF
🟡Сообщество в Discord
🖥Github [ Stars: 271 | Issues: 1 | Forks: 13]


@ai_machinelearning_big_data

#AI #LLM #ML #Qwen2
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍26🔥115👨‍💻2
Новостной дайджест

✔️Jimeng AI: сервис от ByteDance для генерации видео запущен на матрикового Китае.

ByteDance запустила сервис для генерации видео на основе искусственного интеллекта под названием Jimeng AI, намереваясь конкурировать с Sora от OpenAI и аналогичными продуктами .
Разработанное Faceu Technology, которая является частью бизнеса ByteDance Jianying, известного по приложению CapCut, Jimeng AI доступно в Apple App Store для китайских пользователей.
Программное обеспечение позволяет пользователям создавать видео и изображения на основе текстовых подсказок. Jimeng AI предлагает планы подписки, начинающиеся от 69 юаней в месяц (примерно 10 USD). О планах вывода сервиса на международный рынок сведений нет.
news18.com

✔️LG представляет первую в Южной Корее AI-модель с открытым исходным кодом.

LG AI Research представила Exaone 3.0, LLM третьего поколения этой серии.
Exaone 3.0 достигла высших мировых рейтингов в бенчмарках реальных сценариев использования, кодированию и математике, превзойдя Llama 3.1 от Meta и Gemma 2 от Google.
Модель двуязычна, способна понимать как корейский, так и английский языки и обучена на более чем 60 миллионах параметрах из различных специализированных областей. LG AI Research планирует расширить это до более чем 100 миллионов параметров концу 2024 года.
Облегченная версия Exaone 3.0 выпускается как модель с открытым исходным кодом для поддержки исследований и разработок в экосистеме искусственного интеллекта. LG также планирует интегрировать Exaone 3.0 в свои продукты и услуги и изучает возможности глобального партнерства для расширения его применения в реальных отраслях.
asianews.network

✔️Mistral AI запустила файнтюн моделей, раннюю версию Agents и SDK для разработки приложений генеративного ИИ.

Файнтюн моделей Mistral Large 2 и Codestral (base prompting, few-shot prompting, обучение на своих датасетах) добавлен в платформе La Plateforme.
Альфа-версия «Агентов» позволяют создавать роли и рабочие процессы с помощью простых инструкций и примеров для использования в Le Chat или через API.
SDK MistralAi 1.0, поддерживает Python и Typescript.
Все новинки Mistal доступны только пользователям с платной подпиской в интерфейсе La Plateforme на сайте Mistral.
mistral.ai

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍1412🥰3
⚡️ ml_mdm: Набор диффузионных моделей Matryoshka от Apple.

Matryoshka (MDM) - сквозная структура для синтеза изображений и видео высокого разрешения. Вместо обучения отдельных моделей использован многомасштабный процесс совместной диффузии, в котором модели меньшего масштаба вложены в модели большего масштаба. Такая структура вложенности не только облегчает обмен свойствами между масштабами, но и обеспечивает постепенный рост обучаемой архитектуры.

ml_mdm - Python-фреймворк для синтеза изображений и видео c с помощью набора pre-trained моделей Matryoshka.

Codebase фреймворка:

🟠ml_mdm.models - реализация core-модели;
🟠ml_mdm.diffusion - диффузионный пайплайн;
🟠ml_mdm.config - подключение конфигурационных классов данных к моделям, конвейерам с помощью simple parsing (надстройка к argparse);
🟠ml_mdm.clis - все инструменты cli проекта.

Для тестирования инференса, оценки на датасете CC12M и обучении на собственных наборах изображений представлены 3 pre-trained модели, построенные на архитектурах U-Net и Nested U-Nets, обученные на 50 млн. пар "текст-изображение" с Flickr:

🟢vis_model_64x64;
🟢vis_model_256x256;
🟢vis_model_1024x1024.

▶️Локальный запуск:

Зависимости для установки по умолчанию в файле pyproject.toml выбраны таким образом, чтобы можно было установить библиотеку даже на CPU-only систему.

#  Running Test Cases:
> pytest # will run all test cases - including ones that require a gpu
> pytest -m "not gpu" # run test cases that can work with just cpu

# Download the models:
curl https://docs-assets.developer.apple.com/ml-research/models/mdm/flickr64/vis_model.pth --output vis_model_64x64.pth
curl https://docs-assets.developer.apple.com/ml-research/models/mdm/flickr256/vis_model.pth --output vis_model_256x256.pth
curl https://docs-assets.developer.apple.com/ml-research/models/mdm/flickr1024/vis_model.pth --output vis_model_1024x1024.pth

# Launch Web Demo:
torchrun --standalone --nproc_per_node=1 ml_mdm/clis/generate_sample.py --port 19999


⚠️ В Issues репозитория есть обращение о некорректной команде запуска Web Demo. Следите за обновлением тикета и коммитами.


📌Лицензирование :  Apple Inc.


🟡Arxiv
🟡Страница проекта
🖥Github [ Stars: 166 | Issues: 3 | Forks: 6]


@ai_machinelearning_big_data

#AI #Diffusion #ML #Text2Image #Apple
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍198🥰4
Новостной дайджест

✔️Hugging Face приобретает стартап, чтобы разместить еще больше моделей.

Hugging Face приобрела XetHub, платформу для совместной работы над моделями машинного обучения. Цель приобретения - облегчение размещения сотен миллионов моделей.
Компания XetHub, основанная бывшими сотрудниками Apple, разработала технологии, которые позволяют масштабировать Git до репозиториев размером в терабайт.
О сделке объявил соучредитель Hugging Face Жюльен Шомон, который выразил энтузиазм по поводу приобретения и его потенциального влияния на сообщество разработчиков.
forbes.com

✔️Рынок серверов для ИИ достигнет 187 миллиардов долларов в 2024 году.

Основными факторами роста являются растущий спрос со стороны крупных облачных провайдеров и улучшение производственных возможностей TSMC, SK hynix, Samsung и Micron. Их усилия помогли сократить дефицит и сократить сроки поставки для флагманского решения NVIDIA H100. Сейчас NVIDIA занимает почти 90% рынка серверов с GPU.
Ожидается, что поставки AI серверов вырастут на 41,5% в год в 2024 году и доля AI-серверов составит около 65% от общей стоимости серверного рынка.
geeky-gadgets.com


✔️Qwen2-Math занимает первое место по количеству математических моделей.

Alibaba Cloud объявила о том, что ее новая модель Qwen2-Math заняла первое место среди математических LLM.  Qwen2-Math предназначен для решения сложных математических задач и обошел в проведенных тестах GPT-4o от OpenAI и Math-Gemini от Google.
Qwen2-Math-72B-Instruct набрал 84 % баллов в тесте MATH Benchmark, включающем 12 500 сложных математических задач, справился с контрольными заданиями по математике в начальной школе (96,7 %) и на уровне колледжа (47,8 %).
Qwen2-Math выпускается в нескольких наборах параметров - 0,5B, 1,5B, 7B, 14B и 72B.
venturebeat.com


✔️AMD выпустила ROCm 6.2; добавлена поддержка FP8 и расширены возможности обучения и инференса для ИИ.

Благодаря поддержке FP8, ROCm теперь может эффективно обрабатывать вычисления, потребляя меньше памяти и быстрее обучать модели.
В дополнение к поддержке FP8, ROCm 6.2 получил оптимизацию производительности, специально разработанную для рабочих нагрузок ИИ.
Обновление также расширяет поддержку более широкого спектра фреймворков машинного обучения, упрощая процесс интеграции и оптимизации моделей ИИ на платформе AMD.
community.amd.com


✔️Команда китайских ученых создала первый в мире чипсет для AI, работающий исключительно за счет энергии света.

Предыдущее поколение чипов Taichi-I в апреле 2024 года превзошло по энергоэффективности GPU H100 от Nvidia более чем в тысячу раз.
Taichi-II, чья модернизация является большим шагом для оптических вычислений, может стать ключевым фактором перехода из теоретической стадии в масштабные экспериментальные применения, а также удовлетворить растущий спрос на вычислительную мощность с низким энергопотреблением.
scmp.com

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍336🔥5