226K subscribers
3.89K photos
661 videos
17 files
4.5K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
This media is not supported in your browser
VIEW IN TELEGRAM
🧠 Ilia Sutskever, сооснователь OpenAI, призывает пересмотреть саму суть того, как мы строим ИИ.

Он считает, что будущие дата-центры с суперинтеллектом — это новая форма нечеловеческой жизни. И уже сейчас важно заложить в неё доброжелательное, тёплое отношение к людям.

> “Мы хотим, чтобы эти системы испытывали позитивные чувства к человечеству.”

Суцкевер подчёркивает: как мы относимся к ИИ сейчас — так он будет относиться к нам в будущем. Речь не только о правилах или ограничениях. Речь о формировании петли доверия и взаимного уважения между людьми и машинами.

🤝 Это новый вектор развития: не просто техническое выравнивание, а создание ИИ, который *по-настоящему заботится*.

🔔 В эпоху, где ИИ становится всё мощнее, этот посыл особенно важен. Идущие на шаг вперёд разработчики должны думать не только о безопасности, но и о душевной этике будущего интеллекта.

@ai_machinelearning_big_data

#ml #ai #openai #opinion
🥰138👍65🤣3028😁20💯12🤨9🦄7🤬6🐳5🤓3
🔟 Open‑source Deep Research Assistants 🤖

Глубокие исследовательские агент
ы — не просто чат‑боты, а полноценные ИИ‑ассистенты, способные искать информацию, взаимодействовать с инструментами, планировать и писать отчёты. Ниже — 10 мощных open‑source проектов, которые уже можно протестировать:

1. DeerFlow — модульная система от Bytedance: DeerFlow — open‑source фреймворк от Bytedance для создания модульных LLM-агентов.
Поддерживает:
- планирование действий,
- анализ кода,
- генерацию отчётов (включая Text-to-Speech),
- адаптивную интеграцию инструментов.
Создан для исследований, автоматизации и построения сложных агентных пайплайнов.
https://github.com/bytedance/deer-flow

2. Alita — самообучающийся агент с поддержкой Model Context Protocols (MCP), всё в одном модуле. Alita — агент, который сам придумывает, как ему расширить себя, не полагаясь на заранее написанные сценарии, и уже демонстрирует топовые результаты на сложных тестах.
https://github.com/CharlesQ9/Alita

3. WebThinker — автономный веб‑поиск с логикой "думай‑ищи‑пиши", RL‑обучением и глубокой навигацией
https://github.com/RUC-NLPIR/WebThinker

4. SimpleDeepSearcher — это лёгкий, но эффективный open‑source фреймворк от RUCAIBox, предназначенный для автономного веб-поиска через импровизированные многотуровые сессии:

- Использует Supervised Fine‑Tuning (SFT) вместо сложного RL, что значительно упрощает обучение и снижает вычислительные затраты
- Генерирует реалистичные траектории поиска и рассуждений, симулируя поведение пользователя в живом поисковом окружении .
- Критически отбирает данные по нескольким критериям качества: разнообразие запросов, сложность, структура ответов

5. AgenticSeek — приватный on‑device ассистент с выбором эксперта под задачу и голосовым управлением
https://github.com/Fosowl/agenticSeek

6. Suna — универсальный ассистент: браузер, CLI, работа с файлами, API, деплой
https://github.com/kortix-ai/suna

7. DeepResearcher — это комплексный open-source фреймворк от GAIR‑NLP, предназначенный для обучения LLM‑агентов, способных проводить глубокие исследования в автономном режиме, взаимодействуя с вебом. Использует несколько агентов‑браузеров, которые совместно исследуют веб и обрабатывают информацию
https://github.com/GAIR-NLP/DeepResearcher

8. Search‑R1 — агент на PPO/GRPO с поддержкой LLaMA3, Qwen2.5 и кастомных поисковиков. Агент учится эффективному циклу «думай — ищи — думай — отвечай» через RL, достигая важных улучшений в точности ответов и эффективности поиска.
https://github.com/PeterGriffinJin/Search-R1

9. ReCall — это фреймворк на основе RL, который учит LLM "должным образом" вызывать и комбинировать инструменты, используя сгенерированные задачи, без необходимости вручную собирать примеры вызовов — и всё это в открытом доступе.
https://github.com/Agent-RL/ReCall

10. OWL — мультиагентная система на CAMEL‑AI для динамического взаимодействия между агентами
https://github.com/camel-ai/owl

Агенты умеют планировать, взаимодействовать с браузером, запускать скрипты, интегрироваться с API и работать автономно.

Всё проекты — с открытым кодом. Можно изучить, собрать и доработать под свои задачи.

@ai_machinelearning_big_data

#ml #rl #aiagents #ai #agents
Please open Telegram to view this post
VIEW IN TELEGRAM
85🔥40👍21👌21
🚀 Baidu открыла исходный код серии моделей ERNIE 4.5 !

🧠 Эти модели достигли SOTA-результатов на текстовых и мультимодальных бенчмарках:
— следование инструкциям,
— запоминание фактов,
— визуальное понимание,
— мультимодальные рассуждения.

🔧 Обучены на PaddlePaddle с эффективностью до 47% MFU при претрейне крупнейшей модели.

📦 В составе релиза:
- 10 моделей ERNIE 4.5,
- MoE‑архитектуры с 3B и 47B активных параметров,
- самая крупная модель содержит 424B параметров (MoE),
- также доступна компактная dense‑версия на 0.3B.

Всего Baidu выложила сразу 23 модели на Hugging Face размерами — от 0.3B до 424B параметров! 💥

🟢Попробовать: https://ernie.baidu.com
🟢Hugging Face: https://huggingface.co/baidu
🟢GitHub: https://github.com/PaddlePaddle/ERNIE
🟢AI Studio: https://aistudio.baidu.com/overview

@ai_machinelearning_big_data

#ERNIE #opensource #Baidu
Please open Telegram to view this post
VIEW IN TELEGRAM
👍47🔥2010💋1
🔥 Очередной релиз от Alibaba — новая мультимодальная модель Ovis‑U1‑3B.

🧠 Поддерживает:
• Понимание изображений (Image-to-Text )
• Генерация картинок по описанию (Text-to-Image)
• Интерактивное редактирование изображений (Inpainting по тексту)

⚙️ Размер: всего 3B параметров
📊 Производительность:
• 69.6 баллов в OpenCompass (выше, чем у Qwen 2.5 и Ovis-2)
• GenEval Accuracy: 0.89 — превосходит GPT-4o
• ImgEdit-Bench: почти на уровне GPT-4o (4.0 vs 4.2)

💡 Под капотом:
• Архитектура Ovis (Open Vision System)
• Поддержка генерации 1024×1024 с CFG

Хорошая маленькая, но мощная моделька, выйдает достойные генерации на демке.

🟠Попробовать: https://huggingface.co/spaces/AIDC-AI/Ovis-U1-3B
🟠Модель: https://huggingface.co/AIDC-AI/Ovis-U1-3B

@ai_machinelearning_big_data

#Alibaba #opensource
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥5215👍13🥰4
Forwarded from .ml
Архитектура LLM

Что вообще такое эти ваши LLM и чем они отличаются от привычных трансформеров? Давайте разбираться.

Если пытаться дать определение, то LLM — это большая языковая модель, которая была обучена генерировать ответ на какую-либо инструкцию.
Тут два ключевых момента, не считая размер модели: то, что модель генеративная, и то, что она умеет принимать на вход какие-либо инструкции.

📝 Разбираемся с генеративностью

Какая часть трансформера умеет в генерацию текста? Правильно, декодер. Собственно, LLM — это просто жирный (с большим количеством параметров) transformer decoder. Или encoder-decoder, но это только у старых моделей, типа T5. Новые GPT-like архитектуры от энкодеров отошли.

Способность же принимать на вход инструкцию обусловлена пайплайном обучения модели, включая специфичные инструкционные данные, а не какими-либо архитектурными модификациями.

Особенность этого пайлайна — после этапа pre-train модели проводят этап alignment, дообучая модель на инструкционных датасетах. В таких датасете каждый сэмпл — это диалог человека с LLM, который может включать в себя системный промпт (как раз-таки инструкцию), сообщения от лица человека и сообщения от лица LLM, зачастую промаркированные на предмет «хорошести» ответа. Сейчас самые популярные инструкционные датасеты — это Nectar и UltraFeedback.

Итого, LLM — это просто здоровенный transformer decoder, дообученный на инструкционном датасете.
Если углубляться в детали, то популярными архитектурными особенностями современных LLM являются:

- Rotary Positional Encoding (RoPE) и его модификации в качестве позиционного кодирования — вот наш пост про это.

Почему? Помогает работать с более длинным контекстом без значимой потери качества.

- RMSNorm вместо LayerNorm для нормализации.

Почему? Работает сопоставимо по качеству, но проще (быстрее) вычислять — а скорость нам важна.

- Sliding Window, Grouped-Query или Multi-Query вместо ванильного Multi-Head Attention:

Почему? Чем меньше параметров, тем быстрее вычислять.

- Может использоваться Mixture-of-Experts, но это скорее частные случаи.

Почему? Увеличиваем количество параметров модели, не увеличивая при этом сложность вычислений (хоть и страдаем по памяти).

P.S.: если вы увидели много незнакомых слов — не переживайте, в следующих постах расскажем про то, как именно работают все эти навороты.

Эти же архитектурный особенности характерны и для негенеративных современных моделек: например, для энкодеров. Так что нельзя сказать, что это что-то LLM-специфичное — скорее архитектурная база любых современных трансформеров.
53👍21🔥8🤣2
🌟 Self-Hosted AI Package: комплексное решение для локального развертывания ИИ.

Self-Hosted AI Package - это готовый шаблон на основе Docker Compose, который позволяет быстро развернуть полнофункциональную локальную среду с использованием ИИ и low-code инструментов.

Основная цель проекта: предложить разработчикам удобный и быстрый способ для начала работы с локальными ИИ-системами.

✔️ Поддерживаемые инструменты и сервисы:

🟢Self-hosted n8n - Low-code платформа с более 400 вариантами интеграций;

🟢Supabase - База данных с открытым исходным кодом, популярная для агентов ИИ;

🟢Ollama - кросс-платформенный бэкэнд для локального запуска LLM;

🟢Open WebUI - ChatGPT-подобный интерфейс для взаимодействия с моделями и агентами n8n;

🟢Flowise - No/low code конструктор ИИ-агентов, который очень хорошо сочетается с n8n;

🟢Qdrant - Высокопроизводительное векторное хранилище с открытым исходным кодом и обширным API.

🟢Neo4j - Движок для создания графов знаний, на котором работают GraphRAG, LightRAG и Graphiti.

🟢SearXNG - Метапоисковая система с открытым исходным кодом, объединяющая результаты с 229 поисковыми сервисами;

🟢Caddy - Управляемый HTTPS/TLS для пользовательских доменов;

🟢Langfuse - Инженерная платформа с открытым исходным кодом для наблюдаемости агентов.

Проект активно развивается, авторы даже запустили публичную Kanban-доску, где отслеживаются внедрение новых функций и исправление ошибок.

⚠️ Перед запуском служб необходимо настроить переменные окружения для Supabase, следуя их руководству.

⚠️ Основным компонентом набора является файл docker compose, предварительно сконфигурированный с сетью и диском, поэтому больше ничего устанавливать не нужно. После установки нужно будет выполнить действия из Quick start and usage, чтобы начать работу.


▶️Установка:

# Clone repo
git clone -b stable https://github.com/coleam00/local-ai-packaged.git
cd local-ai-packaged

# For Nvidia GPU
python start_services.py --profile gpu-nvidia

# For AMD GPU users on Linux
python start_services.py --profile gpu-amd

# For Mac Run fully on CPU
python start_services.py --profile cpu

#For everyone else
python start_services.py --profile cpu


📌Лицензирование: Apache 2.0 License.


🖥GitHub


@ai_machinelearning_big_data

#AI #ML #Agents #Github
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
70👍32🔥17❤‍🔥1
Media is too big
VIEW IN TELEGRAM
✔️ Alibaba Group представила обновленный Qwen-TTS для английского и китайского языков.

Qwen обновила свой синтезатор речи Qwen-TTS, его обучали на миллионах часов аудиозаписей. Новая версия адаптирует интонацию, ритм и эмоции под контекст текста и приближает звучание к человеческому. Добавили 3 китайских диалекта и поддержку 7 двуязычных голосов (Cherry, Ethan, Jada и др.).

Тесты в SeedTTS-Eval показали высокую точность (WER 1.209) и естественность (SIM 1.967). Модель доступна только через API. В будущем обещают новые языки и стили речи.
qwenlm.github.io

✔️ Исследование: как ИИ-поисковики меняют правила видимости веб-контента.

Совместное исследование ERGO Innovation Lab и ECODYNAMICS показало, что ИИ-системы не просто выдают популярные ссылки, они анализируют структуру, читаемость и ясность контента. Это ставит под сомнение традиционные методы SEO в для традиционных сайтов.

Аналитики изучили 33 тыс. запросов и 600 сайтов из области услуг страхования. Результат: LLM оценивают не только ключевые слова, но и логичность подачи информации, удобство навигации и глубину раскрытия темы.

Специалисты советуют пересмотреть стратегии: упростить тексты, структурировать данные и адаптировать контент под агентные системы. Чем раньше компании пересмотрят свои SEO-стратегии, тем выше вероятность оставаться на виду, когда алгоритмы станут сложнее. Полную версию отчета можно почитать по ссылке.
ergo.com

✔️ OpenAI и компания Марка Цукерберга борются за кадры.

Конкуренция за лучших специалистов в сфере ИИ достигла критической точки. После того как компания Цукерберга переманила 4 ключевых сотрудников OpenAI для работы над «суперинтеллектом», глава исследований Марк Чэн призвал команду Сэма Альтмана оставаться верной компании, пообещав пересмотреть зарплаты и улучшить условия.

По данным источников, Цукерберг предлагает бонусы до $100 млн и лично контактирует с потенциальными кандидатами. Внутри OpenAI сотрудники жалуются на перегрузки, многие работают по 80 часов в неделю. В ответ на агрессивный хэдхантинг, Open AI объявила о «перезагрузке» на неделю, при этом напомнив, что из главная цель - развитие ИИ, а не соревнование с конкурентами.
wired.com

✔️ Microsoft создала ИИ-систему для диагностики, превосходящую врачей.

Microsoft разработала ИИ-инструмент MAI-DxO, который в 4 раза эффективнее опытных врачей в решении сложных диагностических задач. Система использует «оркестратор», создавая сеть из 5 ИИ-агентов, выполняющих роли от генератора гипотез до выбора тестов, которые взаимодействуют и «спорят» для принятия решений.

Тестирование на 304 сложных клинических случаях из NEJM показало точность 85,5% при использовании OpenAI o3 — против 20% у людей без доступа к справочникам или коллегам. Технология может быть интегрирована в Copilot и Bing, которые суммарно обрабатывают около 50 млн. медицинских запросов ежедневно.
ft.com

✔️ Роботы-гуманоиды впервые сыграли в футбол без участия людей.

В минувшую субботу, в Пекине прошел первый в Китае турнир по футболу полностью автономных роботов-гуманоидов. Команда университета Циньхуа победила в финале, обыграв соперников из сельскохозяйственного университета со счетом 5:3. Обе команды использовали одинаковое оборудование от Booster Robotics, но разрабатывали собственные алгоритмы для управления зрением, балансом и движениями.

Матч стал испытанием для технологий: роботы падали, теряли равновесие, а иногда их приходилось уносить на носилках - все это помогает тестировать системы управления и безопасности перед массовым внедрением. Организаторы назвали матч "трейлером" предстоящих Всемирных игр роботов в августе, где будут представлены 11 видов спорта.
bloomberg.com

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4517🔥6🥰1
Искусственный интеллект выходит в классифайды

AIRI — институт, который ведет и поддерживает фундаментальные и прикладные исследованиями в области искусственного интеллекта. Его ученые разработали защиту от дипфейков или систему для ускорение фармакологических расчетов.

Ежегодно организация поддерживает лучших студентов и молодых ученых со всей страны, собирает ведущих экспертов по искусственному интеллекту и проводит углубленный курс по прикладным дисциплинам в рамках Летней школы по ИИ.

В этом году участников Летней школы принимает Томский государственный университет. Она получила поддержку Авито — 80 участников из разных регионов России будут разбирать различные задачи, в том числе бизнес-кейс от крупнейшего классифайда. Авито рассмотрит внедрение лучшего решения на свою платформу.

Ранее компания уже говорила об обновленной стратегии, до 2028 года они планируют инвестировать до 12 млрд рублей во внедрение и развитие GenAI в свои продукты, а также подготовить до 3000 специалистов в области искусственного интеллекта.

Помимо кейсов и публичных лекций, компания предложит карьерные консультации для молодых специалистов и поможет упаковать свой опыт в востребованный на рынке формат, чем также поможет развитию базы кадров в области.
🤣2213👍10🔥2🎄2🗿1
📌 ICONIQ: Плейбук архитектора ИИ-систем 2025.
 
Iconiq Capital опросила 300 руководителей ИИ-стартапов с доходом от $10 млн. до $1 млрд. о том, как эти стартапы используют ИИ и собрала результаты в отчет "ICONIQ AI Builder’s Playbook 2025"

Iconiq Capital - американская компания по управлению инвестициями, основанная в 2011 году. Функционирует как гибридный семейный офис и имеет тесные связи с компанией Марка Цукерберга. Компания предоставляет услуги по инвестиционному менеджменту, частному капиталу, венчурным инвестициям, управлению недвижимостью и филантропии для состоятельных семей и организаций.


▶️Очень кратко:

Эра экспериментальных ИИ-демо закончилась. Сейчас компании массово переходят к боевому использованию генеративных моделей - и тут уже не про «вау», а про ROI, стоимость инференса и объяснимость.


🟡AI-native vs AI-enabled

Компании, с нативными ИИ-продуктами, сильно опережают тех, кто "добавил ИИ". Почти половина стартапов нативных ИИ-продуктов уже достигла масштабирования (47% против 13% у ретрофитеров).

В продуктовом портфеле такой типовой компании в среднем 2,8 модели и они активно идут по пути агентных сценариев, причем многие строят архитектуру с возможностью быстрого свапа моделей.


🟡Ценообразование и монетизация.

ИИ ломает старые цены и бизнес-модели. 38% компаний используют гибридное ценообразование (подписка + плата за использование), ещё 19% — только за использование а 6% уже экспериментируют с outcome-based моделями.

Пока 40% включают ИИ в премиум-пакет, но 37% планируют пересмотреть подход, учитывая реальные метрики использования и отдачу.

🟡Команда и расходы. 

ИИ перестал быть задачей «R&D-уголка». В быстрорастущих компаниях до 37% инженеров работают над ИИ, а AI/ML-инженеров нанимают в среднем за 70+ дней. И это большая проблема.

ИИ забирает до 20% R&D-бюджета, причем по мере роста проекта расходы смещаются с найма в сторону инференса и инфраструктуры.

 
🟡Инструменты и инфраструктура. 

68% компаний используют только облако, ещё 64% сидят на внешних API. OpenAI/GPT - лидер (81%), но растет доля мульти-модельных подходов (Claude, Gemini, Mistral и др.).

NVIDIA по-прежнему доминирует в инференсе: TensorRT и Triton используют 60% команд, но и ONNX Runtime (18%) с TorchServe (15%) укрепляют позиции.

Из инструментов для оркестрации лидируют LangChain и Hugging Face, а для мониторинга — Datadog и LangSmith (~17%). MLOps по-прежнему на MLflow (36%) и Weights & Biases (20%).


🟡Что тормозит развитие. 

Самое сложное в развертывании продуктов оказалось не в коде, а в доверии и эффективности:

42% компаний говорят о проблемах доверия и объяснимости, 39% — не могут показать ROI, 38% — борются с галлюцинациями, а 32% — с высокой стоимостью инференса, а доступ к GPU — проблема лишь для 5%.

Главный вывод: чтобы внедрить ИИ, одной модели не достаточно, еще нужно обосновать ее бизнес-ценность и держать под контролем поведение.
 
🟡ИИ внутри стартапов.

77% команд используют ИИ для помощи в разработке (GitHub Copilot почти у всех), 65% — для генерации контента, 57% — для поиска знаний.
Те, у кого ИИ активно используется получают 15–30% прироста эффективности. Самые распространенные юзкейсы: кодинг, аналитика, поиск по внутренней документации.


Самое неожиданное
Несмотря на популярность OpenAI, стоимость API и непредсказуемость инференса — головная боль даже у тех, кто платит миллионы в месяц.


🔜 Ознакомиться с полным отчетом

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
50👍19🔥8
🧬 Chai‑2: перспективный инструмент для дизайна антител с помощью ИИ

Несмотря на прогресс в проектировании белков, создать рабочие антитела с нуля до сих пор было почти невозможно.

Но новая модель Chai‑2 менянт правила игры.

Chai‑2 — это мультимодальная генеративная модель, которая впервые позволяет проектировать функциональные антитела de novo ( в биологии и биоинформатике означает создание чего-либо с полного нуля, без использования готовых шаблонов или существующих структур.) с высокой точностью.

📊 Результаты:
• 16% антител показали нужную биологическую активность при генерации с нуля — это в 100+ раз лучше, чем у предыдущих методов (аньше hit-rate был <0.1%)
• Создано ≤20 антител для 52 уникальных целей (это разные белки, молекулы или структуры, к которым ИИ должен был спроектировать подходящие антитела)
• Найдены активные антитела для 50% целей — всего за один цикл лабораторного тестирования
• Из 100 спроектированных минибелков 68 реально работали, как задумано, в лабораторных тестах.

🧪 ИИ придумывает молекулу → учёные её синтезируют → тестируют в лаборатории — и всё это занимает меньше двух недель. Раньше на такой цикл уходили месяцы или даже годы.

📦 Почему это важно:
• Такой метод ускоряет разработку антител и препаратов
• Убирает необходимость в дорогостоящем скрининге миллионов вариантов
• Даёт возможность атомарного дизайна молекул под конкретные мишени

📄 Полный отчет: chaiassets.com/chai-2/paper/technical_report.pdf

@ai_machinelearning_big_data


#ml #biotech #ai
🔥7816👍7🥰4👌2