Исследователь Яндекса разработал сервис для запуска языковых моделей с 8 млрд параметров на пользовательских девайсах.
Автор написал инференс модели Llama 3.1 8B, работающий в браузере на WebAssembly без использования GPU. Для этого он применил технологию сжатия нейросетей AQLM, которую разработала команда Yandex Research вместе с университетами ISTA и KAUST.
Для примера, скорость ответов нейросети на MacBook Pro M1 составила 1,5 токена в секунду или 3–4 символа.
@ai_machinelearning_big_data
#AI #ML #LLM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍29🔥10❤5🥱1
EuroLLM - проект, финансируемый ЕС, цель которого создание набора LLM, способных понимать и генерировать текст на всех языках Европейского Союза, а также на некоторых других распространенных не-ЕС языках:
Болгарский, хорватский, чешский, датский, голландский, английский, эстонский, финский, французский, немецкий, греческий, венгерский, ирландский, итальянский, латышский, литовский, мальтийский, польский, португальский, румынский, словацкий, словенский, испанский, шведский, арабский, каталанский, китайский, галисийский, хинди, японский, корейский, норвежский, русский, турецкий и украинский.
⚠️ Ко всем моделям неофициально выпущены квантованные версии в GGUF-формате, ссылки доступны в карточке модели на HF.
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "utter-project/EuroLLM-9B"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
text = "English: My name is EuroLLM. Portuguese:"
inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=20)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
@ai_machinelearning_big_data
#AI #ML #LLM #EuroLLM
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥21👍13❤6🗿2
LG AI Research опубликовала 3 новые инструктивные двуязычные (английский и корейский) модели EXAONE 3.5 с контекстным окном в 32 тыс. токенов:
Разработчики EXAONE 3.5 улучшили эффективность обучения моделей. На этапе предварительного обучения из наборов данных удалялись дубликаты и личная информация, что позволило повысить качество ответов моделей и оптимизировать использование ресурсов. На этапе постобработки применялись методы SFT и DPO, чтобы улучшить способность моделей понимать инструкции и предпочтения пользователей.
Для повышения надежности оценки производительности EXAONE 3.5 был проведен тщательный процесс деконтаминации. Метод деконтаминации был взят из глобальной модели, а его эффективность оценивалась путем многократного сравнения обучающих данных с тестовыми наборами данных.
К каждой модели, LG AI выпустил квантованные версии в форматах AWQ и GGUF.
⚠️ EXAONE 3.5 - инструктивные модели, поэтому рекомендуется использовать системные промпты, представленные в примере кода инференса.
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "LGAI-EXAONE/EXAONE-3.5-7.8B-Instruct"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "%Prompt%"
messages = [
{"role": "system", "content": "You are EXAONE model from LG AI Research, a helpful assistant."},
{"role": "user", "content": prompt}
]
input_ids = tokenizer.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_tensors="pt"
)
output = model.generate(
input_ids.to("cuda"),
eos_token_id=tokenizer.eos_token_id,
max_new_tokens=128,
do_sample=False,
)
print(tokenizer.decode(output[0]))
@ai_machinelearning_big_data
#AI #ML #LLM #EXAONE #LG
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥12❤8👍4
Эксперты Andreessen Horowitz ожидают рост спроса на ядерную энергию для обеспечения растущих потребностей центров обработки данных искусственного интеллекта. Появятся новые профессии, требующие навыков в области аппаратного и программного обеспечения, робототехники и автоматизации.
XR-устройства получат развитие как инструменты для разработчиков, создающих приложения для реального мира. В сфере здравоохранения ИИ будет использоваться для демократизации доступа к медицинской информации и решения кадрового кризиса. Ожидается рост популярности периферийного ИИ и создание крупных вычислительных центров для обучения и развертывания моделей ИИ.
a16z.com
Китайский интернет-гигант Baidu совместно с партийным приложением Xuexi разработал инструмент на основе искусственного интеллекта, который помогает чиновникам создавать политически корректные документы. Xuexi – это приложение, посвященное жизни и идеям Си Цзиньпина.
Новый инструмент проверяет документы на соответствие идеям Си Цзиньпина и гарантирует, что ссылки на его высказывания взяты из проверенных источников. Инструмент также может использоваться для создания документов с цитированием государственной статистики и политики.
theregister.com
Алексис Конно, один из разработчиков Advanced Voice Mode для ChatGPT, основал стартап WaveForm, который занимается созданием системы AI-аудио, способной улавливать больше нюансов речи, чем существующие технологии. WaveForm, получивший начальное финансирование в размере 40 млн. долл. от Andreessen Horowitz, стремится создать систему, которая пройдет "речевой тест Тьюринга", то есть сможет имитировать человеческую речь настолько точно, что пользователи не смогут отличить ее от живого собеседника. В настоящее время WaveForm, состоящий из 5 сотрудников, находится на стадии разработки своих моделей.
axios.com
Ultralytics YOLO11, модель, предназначенная для обнаружения объектов, была скомпрометирована в результате атаки на цепочку поставок. Вредоносный код, внедренный в версии 8.3.41 и 8.3.42, устанавливал криптомайнер на устройства пользователей, скачавших библиотеку с через Python Package Index (PyPI). Ultralytics, используемая в популярных проектах SwarmUI и ComfyUI, загружалась более 260 000 раз за сутки. Вредоносный код запускал майнер XMRig, подключающийся к пулу "connect.consrensys[.]com:8080".
Разработчики Ultralytics удалили скомпрометированные версии и выпустили обновление 8.3.43, устраняющее уязвимость. Расследование показало, что атака, возможно, была осуществлена через два вредоносных запроса на внесение изменений в код от пользователя из Гонконга. В настоящее время проводится полный аудит безопасности для предотвращения подобных инцидентов в будущем.
bleepingcomputer.com
Компания OpenAI на онлайн-стриме анонсировала запуск Sora – инструмента для создания видео по текстовому запросу. Sora доступна подписчикам ChatGPT Plus и Pro, с ограничениями по региону (недоступна на территории ЕС и Великобритании), количеству генераций и качеству видео. Plus-пользователи смогут создавать до 5 видео в месяц длиной до 5 секунд в разрешении до 720p.
Pro-подписка позволяет сгенерировать до 500 коротких видео длиной до 20 секунд в разрешении до 1080p. Sora предлагает различные инструменты для редактирования и управления процессом создания видео: Storyboard для покадровой режиссуры и функции для добавления начала, концовки и объединения нескольких видео.
openai.com
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍18🔥9❤6
Репозиторий на Github c набором ipynb-туториалов по Prompt Engineering для освоения методов создания оптимальных промптов для модели Qwen2.5-14B.
Руководство разделено на 9 глав с практическими упражнениями и приложением с "продвинутыми" методами. В каждой главе есть "Example Playground" для экспериментов с примерами и наблюдения за изменениями в инференсе Ollama.
Руководство использует модель Qwen 2.5-14B, но все материалы подходят и для модели Qwen 2.5-7B.
Начальный уровень
Средний уровень
Продвинутый уровень
Приложение: За пределами стандартных подсказок
@ai_machinelearning_big_data
#AI #ML #LLM #Github #Tutorial #Ollama
Please open Telegram to view this post
VIEW IN TELEGRAM
❤23🔥16👍13👏1
Исчерпывающий материал по обучению с подкреплением (Reinforcement Learning, RL), в котором подробно описываются различные модели среды, задачи оптимизации, исследуется определение компромисса между теорией и практической эксплуатаций RL.
Отдельно рассматриваются смежные темы: распределенное RL, иерархическое RL, обучение вне политики и VLM.
В работе представлен обзор алгоритмов RL:
Автор - Kevin Murphy, главный научный сотрудник и руководитель команды из 28 ресечеров и инженеров в Google Deepmind. Группа работает над генеративными моделями (диффузия и LLM), RL, робототехникой, байесовским выводом и другими темами.
Кевин опубликовал более 140 статей на рецензируемых конференциях и в журналах, а также 3 учебника по ML, опубликованных в 2012, 2022 и 2023 годах издательством MIT Press. (Книга 2012 года была удостоена премии ДеГроота как лучшая книга в области статистической науки).
@ai_machinelearning_big_data
#AI #ML #Book #RL
Please open Telegram to view this post
VIEW IN TELEGRAM
👍30🔥12❤4
Специалисты из AIRI подготовили к презентации 17 научных работ. Среди исследуемых тем — обновление крупнейшего в мире датасета для лекарственных молекул, оптимизация в машинном обучении, а также методы удешевления обучения AI-моделей.
Одна из работ, подготовленных совместно с Лабораторией искусственного интеллекта Сбера, изучает влияние эмоций на принятие решений нейросетями. По словам старшего вице-президента Сбера Андрея Белевцева, такой успех говорит о высокой конкурентоспособности отечественной науки в области AI на мировой арене.
@ai_machinelearning_big_data
#AI #LLM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍38🔥20😁6❤5👏1
This media is not supported in your browser
VIEW IN TELEGRAM
Простое приложение React + Vite для запуска OuteTTS с помощью Transformers.js и WebGPU.
Попробовать демо можно на HuggingSpace. При первом запуске модель загружается в кэш браузера, это занимает какое-то время.
# Clone the repository
git clone https://github.com/huggingface/transformers.js-examples.git
# Go to project dir
cd transformers.js-examples/text-to-speech-webgpu
# Install the dependencies via npm
npm i
# Run dev server
npm run dev
# Open your browser and go to https://localhost:5173
@ai_machinelearning_big_data
#AI #ML #TTS #WebGPU #TransfomersJS
Please open Telegram to view this post
VIEW IN TELEGRAM
👍23❤7🔥6
Файнтюн модели DeepSeek-V2.5 с 236 млрд. параметров с улучшенными показателями в математических вычислениях, программировании, генерации текста и рассуждении. В модели также оптимизированы функции загрузки файлов и обобщения веб-страниц.
Точность решения задач с DeepSeek-V2.5-1210 на LiveCodebench выросла с 29,2% до 34,38% относительно родительской DeepSeek-V2.5, в математических тестах MATH-500 с 74.8% до 82.8%.
DeepSeek-V2.5-1210 поддерживает function calling и использует обновленный шаблон чата для расширения возможностей модели.
⚠️ Чтобы использовать модель в инференсе с BF16 требуется 8 GPU c 80 GB VRAM каждый.
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
model_name = "deepseek-ai/DeepSeek-V2.5-1210"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
# `max_memory` should be set based on your devices
max_memory = {i: "75GB" for i in range(8)}
# `device_map` cannot be set to `auto`
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, device_map="sequential", torch_dtype=torch.bfloat16, max_memory=max_memory, attn_implementation="eager")
model.generation_config = GenerationConfig.from_pretrained(model_name)
model.generation_config.pad_token_id = model.generation_config.eos_token_id
messages = [
{"role": "user", "content": "Write a piece of quicksort code in C++"}
]
input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
outputs = model.generate(input_tensor.to(model.device), max_new_tokens=100)
result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True)
print(result)
@ai_machinelearning_big_data
#AI #ML #LLM #DeepSeek
Please open Telegram to view this post
VIEW IN TELEGRAM
👍17🔥12❤4
vLLM, движок для запуска LLM, стал частью экосистемы PyTorch. vLLM обеспечивает высокую пропускную способность и эффективное использование памяти при работе с моделями, содержащими сотни миллиардов параметров. vLLM поддерживает аппаратные платформы NVIDIA, AMD, Google Cloud TPU, Intel и AWS. Установить vLLM теперь можно простой командой:
pip install vllm
.pytorch.org
Canvas предоставляет возможность совместного редактирования текстов и кода в режиме реального времени. Новая функция позволяет пользователям добавлять текст, вносить изменения и давать обратную связь ChatGPT. Интеграция с Python позволяет запускать код непосредственно в Canvas и визуализировать результаты, включая графику. OpenAI также объявила о поддержке Canvas в пользовательских GPT, что позволит расширить их функциональность и адаптировать к конкретным задачам.
openai.com
Исследователи из МIT создали ContextCite – инструмент, который отслеживает источники информации, применяемые ИИ при создании текста. ContextCite позволяет пользователям проверять достоверность информации, предоставляемой ИИ, выделяя фрагменты текста, на которых основан ответ.
В случае ошибки ContextCite помогает определить источник недостоверных данных и понять логику работы ИИ. Инструмент также способен выявлять «атаки отравления», когда злоумышленники пытаются исказить информацию, вводя ложные данные в источники, используемые ИИ.
news.mit.edu
Ученые из Университета Джонса Хопкинса разработали новый метод машинного обучения DIMON (Diffeomorphic Mapping Operator Learning), который способен эффективно обучаться и решать дифференциальные уравнения в частных производных (PDE) значительно быстрее, чем суперкомпьютеры.
DIMON основан на использовании диффеоморфизмов для преобразования функций, заданных на различных областях, в единую эталонную область. Это позволяет обучить нейросетевой оператор, способный аппроксимировать решение PDE на любой области из семейства диффеоморфных областей. DIMON успешно протестирован на решении уравнения Лапласа и моделировании динамики реакции-диффузии. Он был использован для прогнозирования распространения электрического сигнала в левом желудочке сердца на основе данных 1006 пациентов. DIMON продемонстрировал высокую точность, сократив время прогнозирования с нескольких часов до менее чем одной секунды.
nature.com
Инструмент автоматически генерирует ответы на запросы пользователей и предоставляет ссылки на релевантные источники информации. Ключевой особенностью Reddit Answers является использование данных, собранных непосредственно с платформы Reddit, что позволяет находить нужную информацию без обращения к внешним поисковым системам.
В настоящее время доступ к Reddit Answers ограничен: им могут воспользоваться только пользователи из США через веб-интерфейс или приложение iOS и только на английском языке. В планах - расширить доступность сервиса для других языков и регионов. На данный момент Reddit Answers находится на стадии тестирования.
redditinc.com
Индекс использует систему оценки, основанную на анализе инвестиций в исследования ИИ, количество специалистов по ИИ в штате и доходы от операций, связанных с ИИ. Этот подход позволяет определить, какие компании действительно инвестируют в ИИ, а не просто используют модный термин.
Анализ отслеживаемых 90 компаний показал, что только небольшая часть компаний, упомянувших ИИ в своих отчетах, вкладывает значительные средства в развитие этой технологии.
venturebeat.com
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍26❤8🔥4👏1
TGI v3 — новая версия архитектуры для обработки естественного языка, разработанная Hugging Face. TGI v3 демонстрирует значительный прирост производительности, особенно при работе с длинными запросами.
Улучшения v3:
Flashinfer
и flashdecoding
— новые ядра быстрой обработки текста. Оптимизированная структура кэширования позволяет быстро находить совпадения даже для очень длинных запросов.TGI v3 оценивалась в реалистичных сценариях на коротких и длинные запросах. Результаты тестов показали, что TGI v3 обрабатывает в 3 раза больше токенов, чем vLLM, а скорость обработки увеличилась в 13 раз для запросов длиной 200K+ токенов.
Хотя результаты работы TGI v3 впечатляют, следует учитывать некоторые ограничения:
⚠️ Если в среде не хватает места в kv-кэше, это может привести к конфликту. Чтобы избежать этого эффекта, следует установить ограничение
--max-total-tokens.
⚠️ В сценариях, где несколько реплик находятся за одним эндпоинтом рекомендуется использовать балансировку нагрузки на зависимые сеансы, чтобы заставить каждого пользователя отправлять свои запросы на одну и ту же реплику.
@ai_machinelearning_big_data
#AI #ML #LLM #HuggingFace #TGI
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍19🔥7❤3
“Т-Технологии”(в состав входит Т-Банк) представили свои большие языковые модели T-Pro и обновленную T-Lite на платформе Hugging Face:
Им удалось обогнать все открытые модели в мире по качеству ответов на русском языке в своих категориях, в том числе проприетарные — T-Pro уступает лишь GPT4-o. Это показали разные бенчмарки, в том числе ruMMLU, Ru Arena Hard, MT Bench и AlpacaEval.
⚠️Модели создаются с использованием технологии продолженного предобучения (Continual Pretraining). Это значит, что уже обученную на больших объемах информации модель достаточно дообучить под конкретные задачи. Также модели T-Lite и T-Pro основаны на базе моделей семейства Qwen-2.5, но показывают более высокое качество на задачах русского языка, чем оригинальные модели.
@ai_machinelearning_big_data
#AI #ML #LLM #EXAONE #LG
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤34👍19🤣16🔥8🤨1