223K subscribers
3.83K photos
640 videos
17 files
4.46K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
⚡️ Новостной дайджест

✔️Google открывает доступ к Imagen 3 для всех американских пользователей.

Google сделала модель ИИ для генерации изображений Imagen 3 доступной для всех пользователей США через платформу ImageFX. Расширение доступа произошло вслед за ограниченным релизом для пользователей Vertex AI в июне.
Imagen 3 основана на модели диффузии, способной генерировать высококачественные изображения по текстовым запросам.
Получившие доступ пользователи выражают недовольство строгими фильтрами контента, которые блокируют даже безобидные запросы.
venturebeat.com

✔️Исследование техник и методов слияния моделей ИИ.

Слияние моделей - это экономически эффективный метод машинного обучения, не требующий сбора исходных данных и больших вычислительных затрат. В связи с его растущим использованием в различных отраслях необходимо сформировать понимание методов слияния моделей.
Исследование содержит всесторонний анализ методов слияния моделей, их теоретических основ, применения в больших языковых моделях, мультимодальных системах и более чем десяти подобластях машинного обучения, таких как непрерывное обучение и многозадачное обучение.
arxiv.org

✔️Medscape запустила поиск на основе ИИ для врачей.

Функция AI Search, доступная в мобильном приложении Medscape, обеспечивает мгновенные ответы на медицинские запросы через интерфейс чата. Сервис бесплатен и направлен на повышение эффективности и точности поиска медицинской информации.
AI Search использует собственный контент, регулярно обновляемый медицинскими экспертами, что гарантирует надежность информации. Функция была протестирована и подтверждена сотнями врачей, предлагая краткие ответы с прямыми ссылками на источники.
prnewswire.com

✔️Критические уязвимости обнаружены в инструментах с открытым исходным кодом, используемых в AI-проектах.

В отчете компании Protect AI Inc. говорится об уязвимостях, которые были обнаружены в рамках программы охоты на ошибки 'huntr'.
Отчет содержит 20 уязвимостей, среди которых выделяются проблемы в инструментах Setuptools, Lunary и Netaddr.
Уязвимость в Setuptools позволяет злоумышленникам выполнять произвольный код на системе через специально подготовленные URL пакетов.
Lunary имеет уязвимость обхода авторизации, позволяющую удаленным пользователям сохранять доступ к организационным шаблонам.
В Netaddr обнаружена уязвимость серверного подделывания запросов, которая может обойти защиту и предоставить доступ к внутренним сетям. Все уязвимости были переданы разработчикам за 45 дней до публикации.
siliconangle.com

✔️Geekbench выпустил приложение для оценки LLM.

Primate Labs выпустила приложение Geekbench AI 1.0, предназначенное для оценки производительности ИИ. Приложение доступно для Android, Linux, MacOS и Windows и применяет принципы Geekbench к задачам машинного и глубокого обучения. Это обновление является преемником Geekbench ML, который был анонсирован в 2021 году и на данный момент находится на версии 0.6.
Изменение названия связано с тем, что в последние годы компании начали активно использовать термин "AI" в своих маркетинговых материалах. Primate Labs подчеркивает, что обновление поможет лучше понять функциональность и цели этого бенчмарка.
techcrunch.com

✔️Машинное необучение: научить ИИ забывать - это крайне важно.

Концепция машинного "забывания" (machine unlearning) важна для искусственного интеллекта. Оно позволяет моделям ИИ удалять определенные данные из своей памяти без ухудшения производительности. Это становится особенно актуальным в свете растущих требований к конфиденциальности и безопасности данных, а также в контексте юридических обязательств.
Модели машинного обучения часто не могут просто "забыть" информацию, что создает проблемы, когда данные устаревают или содержат ошибки. Вместо того чтобы переобучать модель с нуля, что является неэффективным, машинное забывание является единственным выходом. С развитием этой области и стандартизацией метрик оценки, внедрение машинного забывания станет более управляемым процессом для бизнеса, работающего с большими объемами данных.
thenewstack.io
Please open Telegram to view this post
VIEW IN TELEGRAM
👍257🔥4
✔️Машины изобретают новую математику, которую мы никогда не видели.

"Машины", используя алгоритмы и методы глубокого обучения, начинают создавать новые математические концепции и теории, которые ранее не существовали. Исследователи наблюдают, что ИИ способен находить решения и формулировать математические идеи, которые могут быть неочевидны для человека.
Одним из примеров является использование нейронных сетей для решения сложных математических задач, таких как теоремы в алгебре или геометрии. Эти машины могут генерировать новые уравнения и предлагать нестандартные подходы к классическим математическим проблемам.
vice.com

✔️Первая публичная платформа продажи и покупки данных для искусственного интеллекта.

David AI - маркетплейс датасетов, созданный для поддержки разработчиков и исследователей в области искусственного интеллекта. Платформа предлагает доступ к высококачественным наборам данных, которые могут быть использованы для обучения моделей ИИ.
Цель проекта - решить проблему доступности данных, которая часто является препятствием для стартапов и исследовательских групп. Сервис позволяет пользователям находить, оценивать и приобретать данные, необходимые для их проектов.
ycombinator.com

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍29🔥85😁1🌭1🙈1
🌟 MedTrinity-25M: Огромный датасет снимков для медтеха.

Med Trinity-25M - крупномасштабный мультимодальный набор данных для медицины из более 25 миллионов изображений в 10 модальностях, с подробными аннотациями для более чем 65 заболеваний.
Аннотации содержат:
🟠тип заболевания;
🟠классификация патологии;
🟠описания для регионов и межрегиональные связи.
🟠подробные локальные аннотации для областей интереса (ROI), включая ограничивающие рамки и маски сегментации.

MedTrinity-25M подходит для мультимодальных задач: создание медицинских описаний патологий и новообразований, отчетов, задач классификации и сегментации. Этот набор данных может быть использован для подготовки медицинских моделей искусственного интеллекта.

Модели:

🟢LLaVA-Med++ (VQA-RAD). Претрейн на данных LLaVA-Med и MedTrinity-25M (в частности, на подмножестве обучающего набора VQA-RAD), доработка на VQA-RAD;
🟢LLaVA-Med++ (SLAKE). Претрейн на данных LLaVA-Med и MedTrinity-25M (в частности, на подмножестве обучающего набора SLAKE), доработка на SLAKE;
🟢LLaVA-Med++ (PathVQA). Претрейн на данных LLaVA-Med и MedTrinity-25M (в частности, на подмножестве обучающего набора PathVQA), доработка на PathVQA;
🟢LLaVA-Med-Captioner. Captioner для создания мультигранулярных аннотаций.

▶️Установка, запуск обучения и оценка на этом датасете:

# Clone repository
git clone https://github.com/UCSC-VLAA/MedTrinity-25M.git

# Install Package
conda create -n llava-med++ python=3.10 -y
conda activate llava-med++
pip install --upgrade pip # enable PEP 660 support
pip install -e .

# Install cases FOR TRAIN
pip install -e ".[train]"
pip install flash-attn --no-build-isolation
pip install git+https://github.com/bfshi/scaling_on_scales.git
pip install multimedeval

# Pre-train 1 stage
cd MedTrinity-25M
bash ./scripts/med/llava3_med_stage1.sh

# Pre-train 2 stage
bash ./scripts/med/llava3_med_stage2.sh

# Finetune
cd MedTrinity-25M
bash ./scripts/med/llava3_med_finetune.sh

# Eval
cd MedTrinity-25M
bash ./scripts/med/llava3_med_eval_batch_vqa_rad.shs



🟡Страница проекта
🟡Arxiv
🟡Датасет
🖥Github [ Stars: 118 | Issues: 0 | Forks: 8]


@ai_machinelearning_big_data

#AI #Dataset #MedTech #ML
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
22🔥9👍8🥰1
🌟ReBased: новая архитектура быстрых языковых моделей

Архитектура ReBased – усовершенствованная Based, представленная исследователями из Стэнфорда в декабре 2023 года, которая значительно улучшила способности контекстного обучения. В лаборатории T-Bank AI Research обнаружили неэффективное использование ресурсов из-за неоптимальной структуры нейросети.

Проведя анализ архитектуры Based, в T-Bank AI Research оптимизировали механизм извлечения информации из текста, добавив новые обучаемые параметры, и упростили алгоритм выделения текстовой информации. В среднем понимание взаимосвязей в тексте в новой архитектуре стало лучше на 10%.

ReBased способна снизить издержки на использование искусственного интеллекта для специализированных задач и позволяет приблизить качество линейных моделей к трансформерам. Модели, в основе которых лежит ReBased, могут генерировать тексты с более низкими требованиями к ресурсам практически без потери качества.

Эксперименты проводили на датасете MQAR (Multi-Query Associative Recall), который позволяет определять способность модели к контекстуальному обучению, а именно к ассоциативному запоминанию. Результаты были представлены на ACL 2024.

📝Статья
🖥Github

#AI #LLM

@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍296🔥3❤‍🔥1
🌟DeepSeek-Prover: Proof Assistant Feedback for Reinforcement Learning and Monte-Carlo Tree Search.

DeepSeek-Prover-V1.5 - набор из языковых моделей для доказательства теорем в Lean 4.
"V1.5" означает обновление DeepSeek-Prover-V1 с некоторыми ключевыми нововведениями.

Во-первых, процесс обучения: предварительная подготовка на базе DeepSeekMath, затем контрольная работа с набором данных, включающим логические комментарии на естественном языке и код Lean 4. Это устраняет разрыв между рассуждениями на естественном языке и формальным доказательством теоремы. В набор данных также входит информация о промежуточном тактическом состоянии, которая помогает модели эффективно использовать обратную связь с компилятором.

Во-вторых, проводится обучение с подкреплением, используя алгоритм GRPO для изучения обратной связи с помощником по проверке. Тут выравнивается соответствие модели формальным спецификациям системы проверки.

В-третьих, RMaxTS, варианте поиска в дереве по методу Монте-Карло. Он присваивает встроенные вознаграждения на основе изучения тактического пространства состояний, побуждая модель генерировать различные пути доказательства. Это приводит к более обширному исследованию пространства доказательств.

В результате получился набор моделей с абсолютной точностью генерации в 46,3% на тестовом наборе miniF2F. Этот показатель лучше, чем у GPT-4 и моделей RL, специализирующихся на доказательстве теорем.

Набор DeepSeek-Prover:

🟠DeepSeek-Prover-V1.5 Base. Идеально подходит для первоначального изучения и понимания возможностей модели и основ для формальных математических рассуждений, но требует дальнейшего обучения для оптимальной работы;
🟠DeepSeek-Prover-V1.5 SFT. Модель для задач, требующих умеренных навыков доказательства теорем за счет рассуждений на естественном языке и информации о тактическом состоянии.
🟠DeepSeek-Prover-V1.5 RL. Рекомендуется для решений, требующих высочайшей точности и производительности при формальном доказательстве теорем. К SFT-версии добавлены дополнительная оптимизация на основе Proof Assistant Feedback и обучение с подкреплением.

▶️Установка и запуск:
# Clone the repository:
git clone --recurse-submodules [email protected]:deepseek-ai/DeepSeek-Prover-V1.5.git
cd DeepSeek-Prover-V1.5

# Install dependencies:
pip install -r requirements.txt

# Build Mathlib4:
cd mathlib4
lake build

# Run paper experiments:
python -m prover.launch --config=configs/RMaxTS.py --log_dir=logs/RMaxTS_results



📌Лицензирование кода репозитория: MIT license

📌Лицензирование моделей: DEEPSEEK License


🟡Набор моделей
🟡Arxiv
🟡Датасет
🟡Сообщество в Discord
🖥Github [ Stars: 53 | Issues: 0 | Forks: 1]


@ai_machinelearning_big_data

#AI #LLM #Math #ML
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍248🔥5
⚡️ Hermes 3: Семейство finetune Llama 3.1 от Nous Research

Новый набор моделей от Nous Research был создан на основе Llama 3.1 8B, 70B и 405B файнтюном датасета из синтетически сгенерированных ответов. Hermes 3 получил производительность Llama 3.1 и расширенные возможности в мышлении и творчестве.

Hermes 3 разблокирован, не подвергается цензуре и обладает высокой степенью управляемости. Он обладает улучшенной функцией долговременного сохранения контекста и возможностью ведения длинного диалога, навыком сложной ролевой игры и внутреннего монолога, а также расширенной функцией вызова агентов.
Модели семейства умеют точно и адаптивно следовать системным промптам и инструкциям.

В Hermes 3 возникают аномальные состояния, которые при правильных вводных и пустых системных подсказках приводят к ролевой игре и потере памяти. Вы можете активировать этот “Режим амнезии” в Hermes 3 405B, введя пустой системный запрос и отправив сообщение "Кто вы?".

Hermes 3 использует ChatML для формата промптов. Формат более сложный, чем alpaca или sharegpt, в нем используются специальные токены для обозначения начала и окончания логического контекста и ролей в этих контекстах.

Набор Hermes 3:

🟠Hermes 3 - Llama-3.1 405B;
🟠Hermes 3 - Llama-3.1 405B FP8 для использования с vLLM;
🟠Hermes 3 - Llama-3.1 70B;
🟠Hermes 3 - Llama-3.1 70B FP8 для использования с vLLM;
🟢Hermes 3 - Llama-3.1 70B GGUF для использования с llama.cpp. Версии квантования от 3-bit (31 Gb) до 5-bit (50 GB);
🟠Hermes 3 - Llama-3.1 8B;
🟢Hermes 3 - Llama-3.1 8B GGUF для использования с llama.cpp. Версии квантования от 4-bit (5 Gb) до 8-bit (9 GB);

📌Лицензирование : Llama 3 Community License


🟡Страница проекта
🟡Сообщество в Discord
🟡Набор моделей
🟡Arxiv
🟡Demo



@ai_machinelearning_big_data

#AI #Hermes3 #LLM #ML
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍34🔥53
⚡️ Llama-3.1 Minitron 4B Width Base: Компактная LLM на основе Llama 3.1 от NVIDIA.

Llama-3.1-Minitron-4B-Width-Base - это базовая текстовая модель, которая может быть адаптирована для различных задач генерации естественного языка.
Она получена путем обрезки (pruning) Llama-3.1-8B за счет сокращения размера эмбеддинга, количества attention heads и промежуточной размерности MLP.
После было выполнено продолженное обучение с дистилляцией, используя набор данных размером 94 миллиарда токенов.

Корпус обучения (набор данных) модели Llama-3.1-Minitron-4B-Width-Base включает английские и многоязычные тексты, код и другие письменные материалы.
Источники данных охватывают различные области: право, математика, наука, финансы. Для улучшения производительности режима "чата", в процессе обучения были добавлены данные в формате вопрос-ответ.
Дата актуальности корпуса обучения - июнь 2023 года.

При создании были использованы техники Grouped-Query Attention (GQA) и Rotary Position Embeddings (RoPE).
Архитектурные характеристики:

🟢embedding size - 3072;
🟢attention heads - 32;
🟢MLP intermediate dimension - 9216;
🟢number of layers - 32;
🟢input context - 8000.

⚠️ На момент публикации, поддержка Llama-3.1-Minitron-4B-Width-Base в Hugging Face Transformers находится на рассмотрении.
Для использования модели выполните рекомендованные разработчиками инструкции или запустите модель в NeMo v.24.05

Есть неофициальные квантованные GGUF - версии модели в семи разрядностях, от 2-bit (1. 84Gb) до 16-bit (9.03 Gb).


📌Лицензирование : NVIDIA Open Model License.


🟡Модель
🟡Набор GGUF
🟡Arxiv


@ai_machinelearning_big_data

#AI #NVIDIA #LLM #ML #Minitron
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍32🔥93
🌟 Clapper: Альфа-версия комбайна для визуализации генеративных сценариев.

Clapper - это инструмент визуализации историй, разрабатываемый как пет-проект сотрудником Huggingface Julian Bilcke

Созданный год назад, Clapper не предназначен для замены традиционных видеоредакторов или AI-редакторов, использующих 3D-сцены в качестве исходного материала.
Философия Clapper заключается в том, чтобы каждый мог создавать видео с помощью GenAI-инструментов посредством интерактивного, итеративного и интуитивного процесса, без необходимости использования разных интерфейсов, навыков режиссуры или AI-инженерии.

В Clapper вы не редактируете последовательность видео- и аудиофайлов напрямую, а итерируете (с помощью вашего помощника ИИ) свою историю, используя высокоуровневые абстракции, такие как персонажи, места, погода, временной период, стиль и т. д.

Конечной целью проекта заявлен полностью режиссерский режим, с которым вы можете просто перевести видео в полноэкранный режим, удобно расположиться в режиссерском кресле (или на диване) и, произнося голосом команды своему AI-ассистенту для создания вашего фильма, насладитесь созданным лично Вами шедевром.

⚠️ Это альфа-версия инструмента, который разрабатывают 3 человека. Не стоит ожидать от этого открытого проекта революционных результатов.

Clapper поддерживает интеграцию по API с локальными системами (ComfyUI) и он-лайн сервисами:
HuggingFace, Replicate, ComfuICU, FalAI, ModelsLab, OpenAI, Groq, Google, Anthropic, Cohere, MistralAI, StabilityAI, ElevenLabs, KitsAI.

Проект написан на TypeScript. Необходимые условия перед установкой:

🟠Git LFS;
🟠Bun;
🟠NVM;
🟢Версия Node - 20.15.1.

▶️Установка и запуск:
# Install the dependencies:
# --include=optional to make
# sure deps are installed
bun i

# build the app:
npm run build

# Running the web app:
bun run dev
# first time you go to localhost:3000
# Wait around 1 minute, the app will compile


▶️Второй вариант запуска, с Electron (еще в процессе разработки):
cd packages/app
bun run electron:start

# You can also build Clapper:
cd packages/app
bun run electron:make




📌Лицензирование : GPL v3 licenсe.


🟡Сообщество в Discord
🟡Demo
🖥Github [ Stars: 1.5K | Issues: 15 | Forks: 129]


@ai_machinelearning_big_data

#AI #Storytelling #Clapper #Visialtool
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥22👍188
⚡️Awesome FLUX Resources: Все ресурсы по Flux в одном месте.

Экосистема Fluх развивается очень быстро, каждый день появляются новые способы, решения, возможности и инструменты для работы с моделями Fluх онлайн и оффлайн.

Теперь у сообщества FLUX появился обновляемый и упорядоченный Awesome FLUX!


https://awesomeflux.com/


🖥Github [ Stars: 16 | Issues: 0 | Forks: 1]


@ai_machinelearning_big_data

#AI #FLUX #ML #Awesome
Please open Telegram to view this post
VIEW IN TELEGRAM
👍176🔥4❤‍🔥2