Falcon Mamba - модель от Technology Innovation Institute (TII, Dubai, UAE), основанная на архитектуре Mamba, которая может обрабатывать последовательности произвольной длины без увеличения памяти хранения.
Модель была обучена на ~5500GT данных RefinedWeb, качественных технических данных и экземпляров кода на разных языках программирования из открытых источников.
Архитектура модели построена на оригинальной Mamba с добавлением дополнительных слоев нормализации RMS.
Такая комбинация придает модели возможность обрабатывать последовательности любой длины без необходимости увеличения потребления памяти, вмещаясь, по сути, на одну А10 24 GB.
Falcon Mamba доступна в экосистеме Hugging Face и совместима с большинством API Hugging Face. Модель также поддерживает функцию квантование bitsandbytes, для обеспечения возможности запуска модели на небольших GPU и CPU.
Коллекция моделей FalconMamba 7B:
@ai_machinelearning_big_data
#AI #Falcon #ML #LLM #Mamba
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍24🔥8❤7
EXAONE-3.0-7.8B-Instruct (EXpert AI for EveryONE) основана на архитектуре Transformers, с длиной контекста в 4096 токенов. Модель использует Rotary Position Embeddings (RoPE) и Grouped Query Attention (GQA), имеет 32 слоя и размер словаря в 102 400 токенов.
Поддержка английского и корейского языков реализована с помощью специального токенизатора BBPE (byte-level byte-pair encoding), который дает низкое сжатие для корейского языка по сравнению с существующими аналогами.
Процесс обучения строился на двухэтапном режиме.
Первый этап состоял из обучения на 6 триллионах токенов для накопления общих знаний , а затем на дополнительных 2 триллионах токенов, ориентированных на более высокие языковые навыки и экспертные знания.
Для улучшения способности следовать инструкциям была применена постобработка: контролируемая тонкая настройка и оптимизация прямых предпочтений.
В реальных сценариях использования EXAONE 3.0 7,8B продемонстрировала высокие результаты в тесте MT-Bench, который коррелирует с оценками в LMSYS Chatbot Arena. Модель показала точность в математических и code задачах, заняв первое место в большинстве проведенных тестов.
Рекомендованная версия transformers>=4.41.0
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained(
"LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct",
torch_dtype=torch.bfloat16,
trust_remote_code=True,
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct")
# Choose your prompt
prompt = "Explain who you are" # English example
prompt = "너의 소원을 말해봐" # Korean example
messages = [
{"role": "system", "content": "You are EXAONE model from LG AI Research, a helpful assistant."},
{"role": "user", "content": prompt}
]
input_ids = tokenizer.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_tensors="pt"
)
output = model.generate(
input_ids.to("cuda"),
eos_token_id=tokenizer.eos_token_id,
max_new_tokens=128
)
print(tokenizer.decode(output[0]))
@ai_machinelearning_big_data
#AI #LLM #ML #EXAONE #LG
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍20❤12🔥2👏1
⚡️ Новостной дайджест
✔️ OpenAI запускает SWE-bench-verified для стандартизации оценки языковых моделей в программировании.
OpenAI представила SWE-bench-verified — инициативу для стандартизации и улучшения оценки производительности языковых моделей в задачах по программированию. Этот бенчмарк включает тщательно проверенные задания и решения на разных языках программирования. Он обеспечивает объективную и сопоставимую оценку возможностей моделей в области разработки программного обеспечения. SWE-bench-verified способствует более точному анализу и сравнению моделей.
openai.com
✔️ Вышла бета-версия Grok-2
Модель демонстрирует показатели на уровне Claude 3.5 и GPT-4. Уже доступна пользователям X Premium.
✔️ Sonova выпустила слуховые аппараты с ИИ, который улучшает звук речи в шумных местах.
Sonova представила Phonak Audéo Sphere - слуховой аппарат с искусственным интеллектом и двухчиповой технологией, которая обеспечивает 53-кратное улучшение понимания речи в шумной обстановке.
Разработанная в течение многих лет платформа решает главную проблему пользователей слуховых аппаратов - разборчивость речи в шуме - с помощью чипа DEEPSONIC с расширенными возможностями DNN.
interestingengineering.com
✔️ YouTube тестирует функцию, позволяющую авторам использовать Google Gemini для мозгового штурма идей для видео.
Платформа тестирует новую функцию, которая позволит создателям контента использовать Google Gemini для мозгового штурма идей для видео.
Этот инструмент будет помогать авторам генерировать темы, планы и даже названия для своих видео на основе трендового контента и предпочтений зрителей. Функция станет частью YouTube Studio. Эта инициатива является частью более широкой стратегии Google по улучшению инструментов авторов с использованием генеративного ИИ.
techcrunch.com
✔️ Intel собирается поставлять графические процессоры для автомобилей.
Intel планирует поставлять дискретные графические процессоры в автомобильную индустрию, начиная с модели Arc A760A. Этот GPU предназначен для интеграции в автомобильные информационно-развлекательные системы, обеспечивая возможность "АААА" игрового опыта прямо в автомобиле.
Кроме того, Intel развивает свою платформу для обработки и анализа данных в реальном времени в автомобиле, которой необходимы вычислительные ресурсы.
engadget.com
✔️ Новая инициатива Linux Foundation направлена на продвижение "необратимых" моделей ИИ с открытым исходным кодом.
Linux Foundation запускает инициативу Open Model Initiative (OMI) для продвижения «безотзывных» открытых AI моделей. Основная цель OMI — создание и поддержка генеративных AI моделей с открытым исходным кодом, которые будут доступны без ограничений, включая лицензии без условий удаления и без повторяющихся платежей.
Инициатива включает разработку стандартов для совместимости моделей, открытых наборов данных для обучения, и создание тестовой модели с альфа-версией. Это движение направлено на развитие этичных и высококачественных AI решений в рамках сообщества разработчиков.
siliconangle.com
@ai_machinelearning_big_data
#news #ai #ml
OpenAI представила SWE-bench-verified — инициативу для стандартизации и улучшения оценки производительности языковых моделей в задачах по программированию. Этот бенчмарк включает тщательно проверенные задания и решения на разных языках программирования. Он обеспечивает объективную и сопоставимую оценку возможностей моделей в области разработки программного обеспечения. SWE-bench-verified способствует более точному анализу и сравнению моделей.
openai.com
Модель демонстрирует показатели на уровне Claude 3.5 и GPT-4. Уже доступна пользователям X Premium.
Sonova представила Phonak Audéo Sphere - слуховой аппарат с искусственным интеллектом и двухчиповой технологией, которая обеспечивает 53-кратное улучшение понимания речи в шумной обстановке.
Разработанная в течение многих лет платформа решает главную проблему пользователей слуховых аппаратов - разборчивость речи в шуме - с помощью чипа DEEPSONIC с расширенными возможностями DNN.
interestingengineering.com
Платформа тестирует новую функцию, которая позволит создателям контента использовать Google Gemini для мозгового штурма идей для видео.
Этот инструмент будет помогать авторам генерировать темы, планы и даже названия для своих видео на основе трендового контента и предпочтений зрителей. Функция станет частью YouTube Studio. Эта инициатива является частью более широкой стратегии Google по улучшению инструментов авторов с использованием генеративного ИИ.
techcrunch.com
Intel планирует поставлять дискретные графические процессоры в автомобильную индустрию, начиная с модели Arc A760A. Этот GPU предназначен для интеграции в автомобильные информационно-развлекательные системы, обеспечивая возможность "АААА" игрового опыта прямо в автомобиле.
Кроме того, Intel развивает свою платформу для обработки и анализа данных в реальном времени в автомобиле, которой необходимы вычислительные ресурсы.
engadget.com
Linux Foundation запускает инициативу Open Model Initiative (OMI) для продвижения «безотзывных» открытых AI моделей. Основная цель OMI — создание и поддержка генеративных AI моделей с открытым исходным кодом, которые будут доступны без ограничений, включая лицензии без условий удаления и без повторяющихся платежей.
Инициатива включает разработку стандартов для совместимости моделей, открытых наборов данных для обучения, и создание тестовой модели с альфа-версией. Это движение направлено на развитие этичных и высококачественных AI решений в рамках сообщества разработчиков.
siliconangle.com
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥22👍12❤7
CogVideoX - обновление модели генерации текста в видео CogVideo, выпущенной в мае 2022 года.
Обновление до CogVideoX :
CogVideoX-2B: первая модель в серии CogVideoX, разработанная для генерации видео.
Для запуска требуется 18GB VRAM GPU (с использованием SAT) для инференса на одном графическом процессоре и 40GB для дообучения и файнтюна.
Модель поддерживает генерацию видео с разрешением 720x480, длительностью 6 секунд и частотой 8 кадров в секунду, с максимальной длиной текстового промпта в 226 токенов.
CogVideoX-5B: более плотная модель на 5B, доступна только для коммерческих целей по API.
При регистрации дают 25 млн токенов попробовать, но возможность регистрации по некитайским номерам сотовых операторов неизвестна.
Технические параметры CogVideoX-5B не публиковались.
CogVideoX обучалась на наборе данных из 35 миллионов видеоклипов, каждый из которых длительностью около шести секунд. Данные для обучения прошли фильтрацию на низкое качество.
CogVideoX использует 3D causal VAE для сжатия видеоданных как в пространственном, так и во временном отношении, тем самым сокращая длину последовательности по сравнению с традиционными методами.
Это помогает поддерживать непрерывность между кадрами, минимизируя мерцание в сгенерированных видео.
Модель объединяет Expert Transformer с адаптивным LayerNorm для синхронизации согласования между видео и текстовыми вхождениями.
Такая конструкция позволяет комплексно моделировать временные и пространственные измерения с использованием 3D full focus, оптимизируя обработку интенсивных движений в генерации.
Выделенный captioning pipeline для видео генерирует точные текстовые описания для кадров, улучшая семантическое понимание модели.
Эмпирические результаты тестов показывают, что CogVideoX превосходит существующие общедоступные модели в машинных и в человеческих оценках.
Перед запуском разработчики советуют сконвертировать текстовой промпт в формат, понятный CogVideoX-2B, так как она обучалась на длинных LLM-образных промптах, выполнив скрипт convert_demo.py.
По умолчанию, CogVideoX использует LLM GLM4, но его также можно заменить любой другой LLM, например GPT, Gemini и т.д.
Этот шаг не является обязательным, модель будет работать без ошибок, но более детальный промпт даст лучшие результаты генерации видео.
# Clone repository & install requirements:
git clone https://github.com/THUDM/CogVideo.git
pip install -r requirements.txt
cd inference
# For Linux and Windows run GradioUI
python gradio_web_demo.py
# For macOS with Apple Silicon use this (maybe 20x slower than RTX 4090)
PYTORCH_ENABLE_MPS_FALLBACK=1 python gradio_web_demo.py
@ai_machinelearning_big_data
#AI #VLM #ML #Text2Video #CogVideoX
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍18❤8🔥7
InternLM2.5-20B-chat - базовая модель с 20 миллиардами параметров ориентированная на чат-взаимодействие. Модель обладает математическими возможностями, поддерживает сбор информации с веб-страниц и получила улучшенный навык следования инструкциям.
Модель может быть развернута с помощью Transformers, vLLM и LMDeploy.
Доступна также версии GGUF для запуска в llama.cpp, LMStudio и Ollama с половинной точностью FP16 (39.7GB) и в малоразрядных квантованных вариациях c шагом в 1 bit : от 2-bit (7.55 GB) до 8-bit (21 GB).
InternLM2.5-1.8B-chat - модель с 1.8 миллиардами параметров и точно такой же направленности и возможностями, как и 20B-chat версия.
Для InternLM2.5-1.8B-chat тоже доступны GGUF версии с разрядностью от FP16 (3.78 GB) до до 2-bit (772 Mb), с шагом в 1 bit.
@ai_machinelearning_big_data
#AI #LLM #ML #InternLM
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍13❤6🔥6
⚡️ Новостной дайджест
✔️ Gemini Live - голосовой ассистент Google, доступен для пользователей.
Google запустила "Gemini Live" — новую функцию голосового взаимодействия для своей AI модели Gemini, которая конкурирует с продвинутым голосовым режимом ChatGPT. Технически, "Gemini Live" использует улучшенные алгоритмы распознавания речи и синтеза голоса, обеспечивая более естественное и контекстуально осведомленное общение.
techcrunch.com
✔️ Microsoft Edge сможет объяснять PDF-документы с помощью ИИ.
Microsoft Edge скоро получит функцию, которая позволит считывать и анализировать PDF-файлы. Эта функция интегрирована с Copilot AI, который сможет обрабатывать текстовые данные, распознавать структуру документов, таблицы и графики, и отвечать на вопросы по содержанию файла.
pcworld.com
✔️ Сервис ставок Polymarket стал партнером с Perplexity.
Polymarket объединился с Perplexity AI, чтобы предоставлять краткие сводки новостей на платформе для прогнозирования рынков. Perplexity AI использует алгоритмы обработки естественного языка (NLP) для генерации кратких, но информативных обзоров новостных событий. Эти обзоры интегрируются в интерфейс Polymarket, помогая его пользователям быстро оценивать текущие события и принимать решения на основе актуальной информации.
techcrunch.com
✔️ Developers Guide по NIM, платформе для приложений искусственного интеллекта от Nvidia.
NiM интегрирует различные инструменты NVIDIA, такие как TensorRT и Triton, и поддерживает работу с облачными и локальными ресурсами. Платформа облегчает управление жизненным циклом AI-моделей, обеспечивая автоматизацию этапов от разработки до внедрения.
В NIM гибко реализована поддержка распределенной обработки для эффективного использования вычислительных мощностей в процессе обучения и инференса моделей при внедрении их масштабах предприятия.
thenewstack.io
✔️ FruitNeRF: CV система поиска и подсчета фруктов на основе нейронного поля Radiance Field. Использует NeRFs для подсчета фруктов любого типа в 3D пространстве.
✔️ Anthropic запилили Context Caching!
Функция может кешировать промпты, которые вы регулярнее используете.
Это позволяет значительно в разы уменьшить стоимость запросов ускорить инференс. Использование кэшкэшируемых токенов стоит на 25% больше обычных.
https://www.anthropic.com
✔️ Модульный суперкомпьютер для рождения AGI, может быть запущен уже в следующем году
SingularityNET разрабатывает суперкомпьютер для достижения AGI к 2025 году.
Суперкомпьютер планируется построить за счет объединения распределенных вычислительных ресурсы через блокчейн, обеспечивая высокую производительность для сложных AI-задач. Технология состоит из модульной архитектуры, под управлением различных AI-моделей и децентрализованное распределение, чтобы предотвратить монополизацию вычислительных мощностей.
digitaltrends.com
@ai_machinelearning_big_data
#news #ai #ml
Google запустила "Gemini Live" — новую функцию голосового взаимодействия для своей AI модели Gemini, которая конкурирует с продвинутым голосовым режимом ChatGPT. Технически, "Gemini Live" использует улучшенные алгоритмы распознавания речи и синтеза голоса, обеспечивая более естественное и контекстуально осведомленное общение.
techcrunch.com
Microsoft Edge скоро получит функцию, которая позволит считывать и анализировать PDF-файлы. Эта функция интегрирована с Copilot AI, который сможет обрабатывать текстовые данные, распознавать структуру документов, таблицы и графики, и отвечать на вопросы по содержанию файла.
pcworld.com
Polymarket объединился с Perplexity AI, чтобы предоставлять краткие сводки новостей на платформе для прогнозирования рынков. Perplexity AI использует алгоритмы обработки естественного языка (NLP) для генерации кратких, но информативных обзоров новостных событий. Эти обзоры интегрируются в интерфейс Polymarket, помогая его пользователям быстро оценивать текущие события и принимать решения на основе актуальной информации.
techcrunch.com
NiM интегрирует различные инструменты NVIDIA, такие как TensorRT и Triton, и поддерживает работу с облачными и локальными ресурсами. Платформа облегчает управление жизненным циклом AI-моделей, обеспечивая автоматизацию этапов от разработки до внедрения.
В NIM гибко реализована поддержка распределенной обработки для эффективного использования вычислительных мощностей в процессе обучения и инференса моделей при внедрении их масштабах предприятия.
thenewstack.io
Функция может кешировать промпты, которые вы регулярнее используете.
Это позволяет значительно в разы уменьшить стоимость запросов ускорить инференс. Использование кэшкэшируемых токенов стоит на 25% больше обычных.
https://www.anthropic.com
SingularityNET разрабатывает суперкомпьютер для достижения AGI к 2025 году.
Суперкомпьютер планируется построить за счет объединения распределенных вычислительных ресурсы через блокчейн, обеспечивая высокую производительность для сложных AI-задач. Технология состоит из модульной архитектуры, под управлением различных AI-моделей и децентрализованное распределение, чтобы предотвратить монополизацию вычислительных мощностей.
digitaltrends.com
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍19❤7🔥5🤬1🎉1🥱1
Writer представил две специализированные языковые модели:
Palmyra-Med-70B-32K — LLM, специально разработанная для сектора здравоохранения, достигающая в тестах по Clinical KG, Medical Genetics и PubMedQA среднего балла 85,87% по биомедицинским показателям, что выше чем у GPT-4 и Med-PaLM-2.
Модель предназначена для некоммерческих и исследовательских целей на английском языке: для поддержки принятия клинических решений, фармнадзора и медицинских исследований.
Palmyra-Fin-70B-32K предназначена для финансовой отрасли, решения различных финансовых задач и аналитических выводов.
Модель предназначена для финансового анализа и исследований на английском языке: прогнозирование рыночных тенденций, оценка рисков, составление финансовых отчетов с высокой точностью и для ответов на сложные вопросы из длинных финансовых документов.
Обе модели доступны для локального инференса через Transformers, по API в сервисах Writer, напрямую в endpoints или используя Python SDK и NodeJS SDK Writers
Стоимость API за 1М токенов: Input - $5.00, Output - $12.00
⚠️ Все модели, созданные Writer.com, содержат водяные знаки для обнаружения и предотвращения неправомерного и незаконного использования.
@ai_machinelearning_big_data
#AI #LLM #ML #Writer
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍27🔥7❤4🎃1