301K subscribers
3.99K photos
702 videos
17 files
4.57K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
🎓 OS-Copilot: Towards Generalist Computer Agents with Self-Improvement

Самосовершенствующийся диалоговый агент, который интегрируется в операционную систему для автоматизации повседневных задач.

OS-Copilot - это новаторская основа для создания универсальных компьютерных агентов, которая обеспечивает единый интерфейс для взаимодействия приложений в экосистеме ОС.

Самосовершенствующийся помощник с искусственным интеллектом, способного решать общие компьютерные задачи.

Агент может взаимодействовать со всеми элементами операционной системы (ОС), включая работу в сети, написание кода, работу с файлами и мультимедиа, работу различными сторонними приложениями.

Github
Project
Статья

ai_machinelearning_big_data
👍305🔥2
Media is too big
VIEW IN TELEGRAM
⚡️OpenCodeInterpreter

OpenCodeInterpreter — семейство моделей с открытым исходным кодом, предназначенных для генерации, выполнения и итеративного уточнения кода.
OpenCodeInterpreter, поддерживаемый Code-Feedback, набором данных, включающим 68 тыс. многошаговых взаимодействий, объединяет выполнение и обратную связь с человеком для уточнения кода.
Оценка OpenCodeInterpreter в таких тестах, как HumanEval, MBPP показывает его исключительную производительность с точностью 83,2 (76,4) в среднем (и в плюс версии), что близко к точности GPT-4 — 84,2 (76,2).
При этом точность может быть повышена до 91,6 (84,6).

🔗 Описание и сами модели OpenCodeInterpreter

@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍29🔥53🤔1🤣1
🧬 Evo: DNA foundation modeling from molecular to genome scale

Эволюция геномного проектирования: роль нейросетей в биологической революции.

Ученые достигли значительного прорыва в биологии с разработкой нейросети Evo-1, которая способна моделировать ДНК, РНК и белки.
Этот инновационный продукт открывает новые горизонты в моделировании биологических последовательностей на различных масштабах, начиная от молекулярного уровня и до полногеномного анализа.

Искусственный интеллект Evo-1 обладает огромным потенциалом для создания новых модификаций CRISPR, предназначенных для лечения различных заболеваний. Эта технология также позволяет создавать материалы с заданными свойствами и тестировать гены в симуляциях, что в свою очередь значительно ускоряет научные исследования и открывает новые перспективы в области генетики.

Одним из ключевых преимуществ Evo-1 является его способность оперативно анализировать генетические последовательности и предсказывать их влияние на организм. Это делает нейросеть эффективным инструментом для исследований в области медицины, агропромышленности и биотехнологий.

Благодаря Evo-1 значительно расширяются возможности генетического проектирования и манипулирования ДНК. Ученые могут более точно изучать структуру генома различных организмов, выявлять гены, ответственные за конкретные болезни, и разрабатывать индивидуализированные подходы к лечению.

Таким образом, нейросеть Evo-1 представляет собой значительный шаг вперед в области генетического инжиниринга и биомедицины. Ее использование обещает революционизировать множество областей науки и привнести новые возможности в борьбе с генетическими заболеваниями и создании инновационных биологических материалов.

🖥 GitHub

@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥32👍167
📹 ML-инженер Яндекса рассказал, как в Браузер встроили модель YandexGPT, которая умеет пересказывать видео

В статье на Хабре объяснили, почему суммаризация статей не то же самое, что суммаризация видео, как научить YandexGPT пересказывать даже очень длинные видео, и сравнили подходы p-tune, LoRa и fine-tune.

ai_machinelearning_big_data
18🔥8🥰2👍1😁1
🖼 Differential Diffusion: Giving Each Pixel Its Strength 🔥

Новый фреймворк, который позволяет настраивать количество изменений на сгенерированных изображениях на пиксель или на область изображения.

Фреймворк может быть интегрирован в любую существующую модель генерация, расширяя ее за счет этой возможности.

Такой детальный контроль количества изменений открывает широкий спектр новых возможностей редактирования, таких как контроль степени модификации отдельных объектов или возможность вносить постепенные пространственные изменения.

Фремворк не требует обучения или тонкой настройки.

code: github.com/exx8/differential-diffusion
page: differential-diffusion.github.io
paper: arxiv.org/abs/2306.00950

ai_machinelearning_big_data
🔥26👍82
🔥 SOTA: Stable Diffusion 3:вышла! 🔥

Stable Diffusion 3 - это новая технология преобразования текста в изображение SOTA.

Новая архитектура Multimodal Diffusion Transformer (MM Bit) использует отдельные наборы весов для изображений и языка, улучшая возможности понимания текста / правописания.

Новая масштабируемая архитектура для синтеза текста в изображение
Двунаправленное смешивание потоков токенов текста и изображений
Самые крупные модели превосходят открытые модели SOTA, такие как SDXL

Blog: https://stability.ai/news/stable-diffusion-3-research-paper
Paper: https://stabilityai-public-packages.s3.us-west-2.amazonaws.com/Stable+Diffusion+3+Paper.pdf

ai_machinelearning_big_data
👍32🔥85🎉1🥴1
This media is not supported in your browser
VIEW IN TELEGRAM
🦸‍♂️ Supermaven uses a 300,000-token context window to provide the highest quality suggestions with the lowest latency.

Состоялся релиз Supermaven — нейросети для генерации кода с контекстным окном 300 тыс. токенов

Разработчики выпустили ИИ-генератор кода Supermaven с контекстным окном 300 тыс. токенов. Это в разы больше, чем возможности GitHub Copilot. Supermaven обучили с нуля, а не адаптировали уже готовое решение.

Представители Supermaven отмечают, что разработчики всё чаще начинают использовать ИИ-генераторы кода на ежедневной основе. Из-за популярности подобных инструментов большие компании пытаются сократить расходы на обслуживании нейросетей, ограничивая контекстное окно. При этом чем больше контекстное окно, тем больше кода за один раз может обработать языковая модель. Поэтому компаниям приходится искать баланс между экономией и удобством для пользователей.

Supermaven разработала и обучила нейросеть на новой архитектуре с контекстным окном в 300 тыс. токенов. При этом сохраняется высокая скорость, а такое масштабное увеличение контекста не сказывается отрицательно на стоимости обслуживания модели в облаке. Для сравнения, Microsoft недавно увеличила контекстное окно Copilot до 8192 токенов.

Возможности Supermaven позволяют языковой модели за 10-20 секунд проанализировать репозиторий, включающий в себя кодовую базу продукта, методы API, документацию и стайлгайды. С помощью этой информации нейросеть будет генерировать не просто работающий код, но и идеально вписывающийся в проект. В блоге Supermaven отмечают, что GitHub Copilot генерирует качественный код только с теми API и библиотеками, которые находились в датасете.

Сейчас Supermaven доступен в виде расширения для VS Code и поддерживает более 70 языков программирования. ИИ-помощник работает по подписке, которую можно оформить за 10 долларов в месяц или 99 в год. Можно активировать пробный период на 30 дней.

▶️ Официальная страничка

@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍30🔥83
⚡️ ResAdapter: Domain Consistent Resolution Adapter for Diffusion Models

Новый фреймворк
предназначенный для диффузионных моделей (например, SD) для создания изображений с любым разрешением и соотношением сторон. В отличие от других методов генерации с заданным разрешениями, которые обрабатывают изображения с последующей обработкой, ResAdapter напрямую генерирует изображения с заданным разрешением.

page: https://res-adapter.github.io
paper: https://arxiv.org/abs/2403.02084
code: https://github.com/bytedance/res-adapter

ai_machinelearning_big_data
👍13🔥72❤‍🔥1
🔅OpenVINO — инструменты с открытым исходным кодом для развёртывания ИИ-систем

Вчера Intel выпустила набор инструментов OpenVINO 2024.0 для нейронных сетей с использованием встроенной поддержки анализа производительности (бенчмарк), анализа пропускной способности и задержки для различных моделей, который позволяет проводить оптимизации и развёртывания ИИ-систем на различном оборудовании. Исходный код проекта выложен на GitHub под лицензией Apache License 2.0.

Проект OpenVINO предназначен для тестирования работы ИИ не только на процессорах x86_64, но также на ARM и других архитектурах, интегрированной и дискретной графике Intel и многом другом оборудовании. Проект поддерживает с помощью плагина возможность использования нейронной обработки блока NPU на новых процессорах Intel Core Ultra Meteor Lake.

В OpenVINO 2024.0 добавлены новые функции для работы с генеративным ИИ (GenAI) включая работу из коробки с моделями энкодера предложений TensorFlow, поддержкой Mixture of Experts (MoE) и проверенными моделями Mistral. Проект получил поддержку API JavaScript для беспрепятственного доступа к API OpenVINO.

OpenVINO 2024.0 также обеспечивает улучшенное качество сжатия веса INT4 для LLM (БЯМ — больших языковых моделей), повышенную производительность LLM на процессорах Intel, упрощённую оптимизацию и преобразование моделей Hugging Face, а также получил другие улучшения интеграции с Hugging Face.

Разработчики пояснили, что OpenVINO 2024.0 также обеспечивает лучшую производительность на процессорах ARM и получил различные улучшения в коде своей платформы.

В OpenVINO 2024.0 прекращена поддержка предыдущего решения Gaussian and Neural Accelerator (Intel GNA) от Intel. Проект теперь фокусируется на NPU в процессорах Meteor Lake и новее. Плагин Intel NPU для OpenVINO теперь распространяется как часть основного пакета OpenVINO на PyPi.

🖥 GitHub

@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3012🔥7🍌2
🔥Подборка лучших обучающих каналов для программистов.

➡️ Делитесь с коллегами и cохраняйте себе, чтобы не потерять

🚀 Data Science

Анализ данных - полезные фишки, код, гайды и советы, маст-хэв датасаентиста
Data Jobs - ds вакансии
Аналитик данных
Data Science книги - актуальные бесплатные книги
Big data

#️⃣C#

С# академия
С# заметки — код, лучшие практики, заметки программиста c#
С# задачи и тесты
С# библиотека - актуальные бесплатные книги
C# вакансии - работа

Машинное обучение

Ml Собеседование - подготовка к собеседовению мл, алгоритмам, кодингу
Ml ru - актуальные статьи, новости, код и обучающие материалы
Ml Jobs - вакансии ML
ML Книги - актуальные бесплатные книги МО
ML чат
Machine Learning - полезные статьи новости гайды и разбор кода


⚡️ Frontend
Javascript академия - крупнейший js канал
React - лучшие гайды и советы по работе с react
Frontend - тутрориалы, уроки, гайды, код
PHP
Книги frontend
Задачи frontend

🏆 Golang
Golang - подробные гайды, разбор кода, лучшие практики, заметки
Golang собеседование
Golang вакансии
Golang книги
Golang задачи и тесты
Golang чат
Golang news - новости go



🐍 Python

Python/django
Python Собеседование - подготовка к собеседовению python и разбор алгоритмов
Pro python - статьи, новости, код и обучающие материалы
Python Jobs - вакансии Python
Python чат
Python книги

Java

Java академия
Java вакансии
Java чат
Java вопросы с собеседований
Java книги

🛢Базы данных
Sql базы данных
Библиотека баз данных
SQL чат

💻 C++

C++ академия
С++ книги
C++ задачи - подготовка к собеседовению мл, алгоритмам
C++ вакансии

💥 Хакинг Kali Linux

Kali linux
linux_kal - kali чат
Информационная безопасность

🐧 Linux

Linux academy

🦀 Rust
Rust программирование
Rust чат
Rust книги для программистов

📲 Мобильная разработка
Android разработка
Мобильный разработчик гайды и уроки

🇬🇧 Английский для программистов

🧠 Искусственный интеллект
ИИ и технологии
Neural - нейросети для работы и жизни
Книги ИИ
Artificial Intelligence

🔥 DevOPs
Devops для программистов
Книги Devops

🌟 Docker/Kubernets
Docker
Kubernets

📓 Книги
Библиотеки Книг для программситов

💼 Папка с вакансиями:
Папка Go разработчика:
Папка Python разработчика:
Папка Data Science
Папка Java разработчика
Папка C#
Папка Frontend
👍16🔥421🍌1
🚀 PeRFlow: Piecewise Rectified Flow as Universal Plug-and-Play Accelerator

Фреймворк для ускорения предварительно обученных моделей диффузии, который значительно повышает их производительность.

Github
Project

ai_machinelearning_big_data
👍10🔥4😁43🍌1
This media is not supported in your browser
VIEW IN TELEGRAM
🏎 TripoSR: Fast 3D Object Reconstruction from a Single Image

Современная модель с открытым исходным кодом для быстрой 3D-реконструкции по одному изображению.

Модель создает высококачественные 3D-модели менее чем за 0,5 секунды на графическом процессоре NVIDIA A100.

page: https://tripo3d.ai
paper: https://drive.google.com/file/d/1LWlZPT2aASi9jHiGVhDSr4YCTANoFW5t/view
code: https://github.com/VAST-AI-Research/TripoSR

ai_machinelearning_big_data
🔥22👍93🤯3🥰1🍌1😡1
🙃 ИИ чат-боты «думают» на английском, даже когда говорят на других языках

Большие языковые модели (LLM), лежащие в основе чат-ботов, «думают» на английском языке, даже если вопросы задаются на других языках, пишет New Scientist со ссылкой на исследование учёных Федеральной политехнической школы Лозанны.

Чтобы понять, какой язык на самом деле используют LLM при обработке запросов, учёные изучили три версии модели Llama 2. Благодаря тому, что Llama 2 имеет открытый исходный код, исследователи смогли ознакомиться с каждым этапом обработки запроса.

Они открыли эти модели и изучили каждый из их слоёв. ИИ-модели состоят из нескольких слоёв, каждый из которых отвечает за определённый этап обработки запроса: один переводит подсказки в токены, другой контекстуализирует каждый токен и т.д.

Моделям были предложены 3 типа запросов на китайском, французском, немецком и русском языках. В одном случае предлагалось повторить заданное слово, во втором — перевести с одного неанглийского языка на другой, и в третьем — заполнить пробел в одно слово в предложении, например: «___ используется для занятий такими видами спорта, как футбол и баскетбол».

Отследив процессы внутри LLM, учёные обнаружили, что путь обработки через слои почти всегда проходит через то, что они называют английским подпространством. То есть, если предложить модели перевести с китайского на русский, русские символы проходят через английское подпространство, прежде чем вернуться на русский, говорит учёный, что является убедительным признаком того, что модели используют английский, чтобы помочь себе понять суть запроса.

Это вызвало у учёных обеспокоенность по поводу того, что использование английского языка в качестве посредника для обучения модели несёт с собой риск.

«Если английский станет основным языком, на котором системы обрабатывают запросы, мы, скорее всего, потеряем концепции и нюансы, которые можно оценить только на других языках», — говорит Карисса Велиз (Carissa Véliz) из Оксфордского университета.

@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍48🔥194😁4🥱4🍌3🤔1💊1
🔥 Вероятно, ожидается прорыв в AI — придуман новый способ умножения матриц

В основе AI лежит матричное исчисление, которое только что пережило самый большой подъем более чем за десятилетие. Почти одновременно вышли две статьи, в которых математики объяснили, как повысить эффективность перемножения матриц, с помощью чего AI сможет быстрее обучаться и быстрее решать задачи.

Суть в том, что до относительно недавнего времени человечество не представляло иного способа умножения матриц, чем выполнением n³ операций (n — размерность матриц). В идеальном же для математиков мире умножение матриц хотелось совершать за n² операций. И к началу 70-х годов процесс поиска соответствующего алгоритма пошёл. Нетрудно догадаться, что к этому побудило распространение вычислительных машин.

Заявленный в новых статьях прорыв, совершённый в 2023 году, произошёл в результате обнаружения скрытых потерь в «лазерном методе» Арнольда Шёнхаге. В ноябре 2023 года Ран Дуань и Ренфэй Чжоу из Университета Цинхуа представили метод, который устранил неэффективность лазерного метода, установив новую верхнюю границу числа необходимых операций примерно на уровне n^2.371866. Это самый существенный прогресс в этой области с 2010 года.
Но всего 2 месяца спустя Вирджиния Василевски, Инчжан Сюй и Цзысюань Сюй из МТИ опубликовали вторую статью, в которой подробно описали ещё одну оптимизацию, которая снизила верхнюю границу количества операций до n^2.371552.

Безусловно, точное влияние на скорость работы моделей AI зависит от конкретной архитектуры системы ИИ и от того, насколько сильно задачи конкретной модели зависят от умножения матриц. Поэтому повышение эффективности алгоритмов будут сочетать с оптимизацией оборудования, чтобы полностью реализовать потенциальный прирост скорости.
И по мере того, как улучшения в алгоритмических методах будут накапливаться с течением времени, искусственный интеллект будет становиться быстрее — это факт.

📎 Читать подробнее

@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍69🔥187😁7🍌2❤‍🔥1