Илон Маск пообещал, что ИИ-стартап xAI откроет исходный код чат-бота Grok на этой неделе.
Маск сделал это заявление через несколько суток после того, как подал в суд на OpenAI и пожаловался, что поддерживаемый Microsoft стартап отклонился от своих корней и не выложил в открытом доступе исходный код ChatGPT.
4 ноября 2023 года xAI запустила своего чат-бота Grok с генеративным искусственным интеллектом для ограниченной аудитории. В компании планировали сделать языковую модель xAI доступной для всех платных подписчиков соцсети X.
@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍33👏7❤6🔥4🍌4
OpenAI опубликовала код отладчика Transformer Debugger, предназначенного для работы с моделями машинного обучения. С его помощью проще понимать, почему языковые модели выводят определённые токены в ответ на запрос.
Transformer Debugger, как и любой отладчик для моделей машинного обучения поддерживает функции пошагового вывода, перехвата активностей и их трассировки. Разработчики компании отмечают, что утилита помогает понять, почему языковая модель уделяет внимание определённым токенами и почему выводит их в качестве ответа на запрос.
Выпуск включает в себя следующие компоненты:
@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍28🔥7❤3🍌1🫡1
🔥 Convolutional Reconstruction Model
Модель для сверхбыстрого преобразования изображений в 3D, с помощью модели сверточной реконструкции.
▪Github
▪Page
▪Paper
@ai_machinelearning_big_data
Модель для сверхбыстрого преобразования изображений в 3D, с помощью модели сверточной реконструкции.
▪Github
▪Page
▪Paper
@ai_machinelearning_big_data
🔥22👍6❤2🍌1
🚀 Pix2Gif: Motion-Guided Diffusion for GIF Generation
Microsoft опубликовала модель преобразования изображений в GIF под названием Pix2Gif!
Они утверждают, что модель лучше всех понимает и генерирует движения, хотя мы не говорим об уровне Sora, это, безусловно, шаг вперед по сравнению с результатами замедленной съемки, к которым мы привыкли.
▪Github
▪Page
▪Paper
▪Demo
@ai_machinelearning_big_data
Microsoft опубликовала модель преобразования изображений в GIF под названием Pix2Gif!
Они утверждают, что модель лучше всех понимает и генерирует движения, хотя мы не говорим об уровне Sora, это, безусловно, шаг вперед по сравнению с результатами замедленной съемки, к которым мы привыкли.
▪Github
▪Page
▪Paper
▪Demo
@ai_machinelearning_big_data
👍17🔥8❤4🍌1
Метод исследования основан на процессе одновременной и гетерогенной многопоточности (SHMT). Он задействует различные типы процессоров, содержащиеся в современных компьютерах: графический, центральный и тензорный (для работы технологий ИИ).
Концепция SHMT используется, в частности, во время планирования — процесса, в котором система выбирает порядок и расположение задач, решая, какие операции должны выполняться на процессорах каждого типа.
Тестовая установка включала ЦП ARM Cortex-A57, GPU Nvidia и тензорный процессор Google Edge. Благодаря одновременной и гетерогенной многопоточности выполнение расчёта примера кода прошло в 1,95 раза быстрее, а потребление энергии сократилось на 51%.
Учёные признали, что им предстоит преодолеть серьёзные проблемы, связанные с разделением вычислительных задач, которые будут выполняться разными типами процессоров, а затем объединением всего обратно без какого-либо замедления. По их оценкам, технологию SHMT не получится повсеместно внедрить в ближайшем будущем.
@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍15❤11🔥6🤩3🍌3
⭐️ Awesome Quant: Финансовая математика
Лучшие пакеты r, библиотеки python, пакеты julia, инструменты прогнозирования, программное обеспечение для работы с биржами, финансовые инструменты, r, python, julia, rust, java и многое другое.
Большой кураторский список безумно полезных библиотек, пакетов и ресурсов для Квантов.
https://wilsonfreitas.github.io/awesome-quant/
📌 А здесь репозиторий для изучения Python - ссылка
#курсыPython
@ai_machinelearning_big_data
Лучшие пакеты r, библиотеки python, пакеты julia, инструменты прогнозирования, программное обеспечение для работы с биржами, финансовые инструменты, r, python, julia, rust, java и многое другое.
Большой кураторский список безумно полезных библиотек, пакетов и ресурсов для Квантов.
https://wilsonfreitas.github.io/awesome-quant/
📌 А здесь репозиторий для изучения Python - ссылка
#курсыPython
@ai_machinelearning_big_data
👍15❤8🔥4🍌2
В списке самых перспективных ИИ-разработок оказались текстовая YandexGPT и мультимодальная YandexART 🎉
Рейтинг охватил все ключевые категории генеративных нейросетей: текстовые, картиночные, видео, аудио, мультимодальные, чат-боты, игровые и другие. Его опубликовало сообщество дата-сайентистов, ML-экспертов и энтузиастов в сфере ИИ.
Помимо этого, Яндекс стал одной из 11 компаний со всего мира, разрабатывающих более одного типа GenAI-моделей наряду со Open AI, Microsoft и Google.
@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍47🔥10🎉7🥴7❤5🍌2💊1
🎮 Google Deepmind представили SIMA
Это первый универсальный агент с искусственным интеллектом, который выполняет инструкции на естественном языке в широком спектре 3D-виртуальных сред и видеоигр.
Агент может выполнять задачи, аналогичные человеческим, и превосходит агентов, обученного всего в одной среде.
Его цель заключается не в достижении высоких результатов в играх, а скорее в умении взаимодействовать с окружающим миром.
На данный момент SIMA обучается на девяти различных видеоиграх, включая No Man's Sky от студии
Нейросеть обучается широкому спектру навыков, начиная от простой навигации и использования меню до добычи ресурсов, полета на космическом корабле и создания предметов.
Ученые также создали четыре исследовательские среды на движке Unity, где агентам предстоит строить скульптуры из строительных блоков, это поможет проверить их способность манипулировать объектами и интуитивное понимание физического мира.
Результаты SIMA демонстрируют потенциал для разработки новой волны универсальных ИИ-агентов, управляемых командами на естественном языке.
▪ Post
▪ Technical report
@ai_machinelearning_big_data
Это первый универсальный агент с искусственным интеллектом, который выполняет инструкции на естественном языке в широком спектре 3D-виртуальных сред и видеоигр.
Агент может выполнять задачи, аналогичные человеческим, и превосходит агентов, обученного всего в одной среде.
Его цель заключается не в достижении высоких результатов в играх, а скорее в умении взаимодействовать с окружающим миром.
На данный момент SIMA обучается на девяти различных видеоиграх, включая No Man's Sky от студии
Hello Games и Teardown от Tuxedo Labs. Кроме того, на скриншотах можно увидеть такие игры, как Valheim, Hydroneer, Wobbly Life, Satisfactory и Goat Simulator 3.
Нейросеть обучается широкому спектру навыков, начиная от простой навигации и использования меню до добычи ресурсов, полета на космическом корабле и создания предметов.
Ученые также создали четыре исследовательские среды на движке Unity, где агентам предстоит строить скульптуры из строительных блоков, это поможет проверить их способность манипулировать объектами и интуитивное понимание физического мира.
Результаты SIMA демонстрируют потенциал для разработки новой волны универсальных ИИ-агентов, управляемых командами на естественном языке.
▪ Post
▪ Technical report
@ai_machinelearning_big_data
👍28🔥11❤6🥰2🍌1
OpenAI пока официально не раскрыла информацию об утечке, поэтому статус GPT-4.5 Turbo и дата выпуска в июне 2024 года окутаны тайной.
12 марта 2024 года исследователи обнаружили в кэше Bing, что OpenAI готовится представить нейросеть GPT-4.5 Turbo. Но ссылка на эту страницу на сайте OpenAI выдаёт ошибку 404. Также из поисковой выдачи пропало упоминание о новом чат-боте.
@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥18👍6🥰3🍌3👏1
Исследование проводилось методом side-by-side. Для определения потенциала модели эксперты использовали комбинацию двух факторов: оценку производительности модели на ее «родном» языке и наивысшую оценку реакции модели на любом другом языке. Кроме того проводились слепые тесты по задачам: перевод, творческое написание текстов, генерация кода и анализ данных.
@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥55🤣38👍16❤7💊6😁4🤪4🤔3🍌1
Стэнфордская библиотека NLP для понимания и улучшения моделей на основе PyTorch.
Воздействие на внутренние состояния модели являются важной операцией во многих областях работы с ИИ, включая редактирование модели, управление, ее надежность и интерпретируемость.
Для облегчения таких задач исследователи Стэнфорда создали библиотеку Python с открытым исходным кодом, которая поддерживает сложные схемы взаимодействия с моделями в интуитивно понятном формате.
pip install pyvene
Например, вы можете использовать любую модель hf:
import torch
import pyvene as pv
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "meta-llama/Llama-2-7b-hf" # your HF model name.
model = AutoModelForCausalLM.from_pretrained(
model_name, torch_dtype=torch.bfloat16, device_map="cuda")
tokenizer = AutoTokenizer.from_pretrained(model_name)
def zeroout_intervention_fn(b, s):
b[:,3] = 0. # 3rd position
return b
pv_model = pv.IntervenableModel({
"component": "model.layers[15].mlp.output", # string access
"intervention": zeroout_intervention_fn}, model=model)
# run the intervened forward pass
orig_outputs, intervened_outputs = pv_model(
tokenizer("The capital of Spain is", return_tensors="pt").to('cuda'),
output_original_output=True
)
print(intervened_outputs.logits - orig_outputs.logits)
Вернет:
tensor([[[ 0.0000, 0.0000, 0.0000, ..., 0.0000, 0.0000, 0.
[ 0.0000, 0.0000, 0.0000, ..., 0.0000, 0.0000, 0.0000],
[ 0.0000, 0.0000, 0.0000, ..., 0.0000, 0.0000, 0.0000],
[ 0.4375, 1.0625, 0.3750, ..., -0.1562, 0.4844, 0.2969],
[ 0.0938, 0.1250, 0.1875, ..., 0.2031, 0.0625, 0.2188],
[ 0.0000, -0.0625, -0.0312, ..., 0.0000, 0.0000, -0.0156]]],
device='cuda:0')
▪Github
▪Paper
▪Colab
@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍33🔥10❤4🥴3🍌1
Могут ли нейросети понимать человеческие эмоции?
Да, могут!
В Yandex Cloud разработали нейросеть-эмпата на базе технологии распознавания речи Yandex SpeechKit, которая поможет бизнесу понимать эмоции клиентов по голосу. Новая ML-модель уже может определить негатив, неформальные высказывания и нецензурную лексику.
Расшифровка и анализ эмоций происходят сразу во время разговора. Это позволит лучше адаптировать коммуникации компании под каждого клиента и оперативно реагировать на инциденты в диалоге, если что-то пошло не так.
Вскоре нейросеть-эмпат будет работать в связке с YandexGPT в сервисе речевой аналитики SpeechSense — после этого она сможет понимать неуверенность, сарказм и другие сложные эмоции.
➡️ Узнайте обо всех возможностях нейросети по ссылке
@ai_machinelearning_big_data
Да, могут!
В Yandex Cloud разработали нейросеть-эмпата на базе технологии распознавания речи Yandex SpeechKit, которая поможет бизнесу понимать эмоции клиентов по голосу. Новая ML-модель уже может определить негатив, неформальные высказывания и нецензурную лексику.
Расшифровка и анализ эмоций происходят сразу во время разговора. Это позволит лучше адаптировать коммуникации компании под каждого клиента и оперативно реагировать на инциденты в диалоге, если что-то пошло не так.
Вскоре нейросеть-эмпат будет работать в связке с YandexGPT в сервисе речевой аналитики SpeechSense — после этого она сможет понимать неуверенность, сарказм и другие сложные эмоции.
@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍23👏5❤3🤔3🍌1
Microsoft заявила, что доступ к огромным объёмам данных и наличие оптимизированных под искусственный интеллект чипов дают Google преимущество в сфере генеративных нейросетей. Таким образом софтверный гигант попытался подчеркнуть наличие конкуренции в сегменте генеративных нейросетей. В январе этого года Еврокомиссия, основной отраслевой регулятор Евросоюза, начала проверку с целью выявления нарушений антимонопольного законодательства в этой сфере.
Сегмент генеративных нейросетей развивается быстрыми темпами. Появление чат-ботов на основе искусственного интеллекта, таких как ChatGPT от OpenAI и Gemini от Google, вызывает опасения по поводу того, что подобные технологии могут использоваться для создания фейковых новостей и распространения дезинформации. На этом фоне Еврокомиссия начала изучать сегмент, чтобы убедиться в том, что все игроки находятся в одинаковых условиях.
«Сегодня только одна компания — Google — вертикально интегрирована таким образом, что обеспечивает ей силу и независимость на всех уровнях ИИ — от чипов до процветающего магазина мобильных приложений. Все остальные вынуждены полагаться на партнёрские отношения, чтобы внедрять инновации и конкурировать», — говорится в докладе Microsoft, который был направлен в Еврокомиссию.
В Microsoft считают, что способность Google самообеспечивать себя оптимизированными под ИИ чипами даст ей конкурентные преимущества на ближайшие несколько лет. В это же время огромные массивы данных из поискового индекса Google и YouTube позволят компании обучать свою языковую модель Gemini. «YouTube предоставляет беспрецедентный набор видеоконтента: на платформе размещено около 14 млрд видеороликов. У Google есть доступ к этому контенту, а у других разработчиков в сфере ИИ — нет», — заявила Microsoft.
@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍15😁4❤2🔥2🍌1