This media is not supported in your browser
VIEW IN TELEGRAM
⚡️ Magic-Me: Identity-Specific Video Customized Diffusion
Новый фреймворк для создания видео с конкретным человеком.
С помощью предварительно обученного ID-токена вы можете генерировать любые видеоклипы с заданным персонажем.
В работе представлены ряд управляемых методов генерации и редактирования видео.
▪Github: https://github.com/Zhen-Dong/Magic-Me
▪Colab: https://colab.research.google.com/drive/1gMialn4nkGeDZ72yx1Wob1E1QBgrqeGa
▪Project: https://magic-me-webpage.github.io
▪Paper: arxiv.org/abs/2402.09368
ai_machinelearning_big_data
Новый фреймворк для создания видео с конкретным человеком.
С помощью предварительно обученного ID-токена вы можете генерировать любые видеоклипы с заданным персонажем.
В работе представлены ряд управляемых методов генерации и редактирования видео.
▪Github: https://github.com/Zhen-Dong/Magic-Me
▪Colab: https://colab.research.google.com/drive/1gMialn4nkGeDZ72yx1Wob1E1QBgrqeGa
▪Project: https://magic-me-webpage.github.io
▪Paper: arxiv.org/abs/2402.09368
ai_machinelearning_big_data
👍22🔥8❤3
👨🦱 Awesome Face Recognition
Огромный кураторский список материалов: обнаружение лиц; распознавание; идентификация; верификация; реконструкция; отслеживание; сверхразрешение и размытие; генерация и синтез лиц; замена лиц; защита от подделки; поиск по лицу.
▪Github
ai_machinelearning_big_data
Огромный кураторский список материалов: обнаружение лиц; распознавание; идентификация; верификация; реконструкция; отслеживание; сверхразрешение и размытие; генерация и синтез лиц; замена лиц; защита от подделки; поиск по лицу.
▪Github
ai_machinelearning_big_data
🔥33👍18❤5🥰2🍌2
This media is not supported in your browser
VIEW IN TELEGRAM
⚡️ V-JEPA: The next step toward Yann LeCun’s vision of advanced machine intelligence (AMI)
V-JEPA (шутки в сторону) сегодня выпущен новый метод обучения машин пониманию и моделированию физического мира с помощью просмотра видео.
Эта работа - еще один важный шаг на пути к к видению моделей ИИ, которые используют изученное понимание мира для планирования, рассуждения и выполнения сложных задач.
Модели способны понимать и предсказывать, что происходит в видео, даже при ограниченном объеме информации.
Они обучаются, предсказывая недостающие или непонятные части видео в своем внутреннем пространстве признаков. В отличие от генеративных подходов, которые заполняют недостающие пиксели, этот гибкий подход позволяет до 6 раз повысить эффективность обучения и выборки.
Модели были предварительно обучены на полностью немаркированных данных.
Результаты показывают, что, лучшие модели V-
Эта работа является важной вехой на пути развития машинного интеллекта.
▪Github: https://github.com/facebookresearch/jepa
▪Paper: https://ai.meta.com/research/publications/revisiting-feature-prediction-for-learning-visual-representations-from-video/
▪Blog: https://ai.meta.com/blog/v-jepa-yann-lecun-ai-model-video-joint-embedding-predictive-architecture/
ai_machinelearning_big_data
V-JEPA (шутки в сторону) сегодня выпущен новый метод обучения машин пониманию и моделированию физического мира с помощью просмотра видео.
Эта работа - еще один важный шаг на пути к к видению моделей ИИ, которые используют изученное понимание мира для планирования, рассуждения и выполнения сложных задач.
Модели способны понимать и предсказывать, что происходит в видео, даже при ограниченном объеме информации.
Они обучаются, предсказывая недостающие или непонятные части видео в своем внутреннем пространстве признаков. В отличие от генеративных подходов, которые заполняют недостающие пиксели, этот гибкий подход позволяет до 6 раз повысить эффективность обучения и выборки.
Модели были предварительно обучены на полностью немаркированных данных.
Результаты показывают, что, лучшие модели V-
JEPA достигают 82,0 % на Kinetics-400, 72,2 % на Something-Something-v2 и 77,9 % на ImageNet1K
.Эта работа является важной вехой на пути развития машинного интеллекта.
▪Github: https://github.com/facebookresearch/jepa
▪Paper: https://ai.meta.com/research/publications/revisiting-feature-prediction-for-learning-visual-representations-from-video/
▪Blog: https://ai.meta.com/blog/v-jepa-yann-lecun-ai-model-video-joint-embedding-predictive-architecture/
ai_machinelearning_big_data
😁31🔥16👍10❤3🥰1
This media is not supported in your browser
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
OpenAI выпустила технический отчет Sora!
Вот что вам нужно знать о лучшей архитектуре модели преобразования текста в видео.
𝟭. 𝗗𝗮𝘁𝗮 𝗥𝗲𝗽𝗿𝗲𝘀𝗲𝗻𝘁𝗮𝘁𝗶𝗼𝗻: Sora преобразует визуальные данные в пространственно-временные патчи (spacetime patches), подобно токенизации в больших языковых моделях (LLM). Это позволяет масштабировать обучение на разнообразном визуальном контенте.
𝟮. 𝗖𝗼𝗺𝗽𝗿𝗲𝘀𝘀𝗶𝗼𝗻 𝗮𝗻𝗱 𝗣𝗮𝘁𝗰𝗵 𝗘𝘅𝘁𝗿𝗮𝗰𝘁𝗶𝗼𝗻: Видео компрессор уменьшает визуальные данные до сжатого латентного пространства, а затем разбивает его на пространственно-временные патчи. Эти патчи являются строительными блоками для обучения и создания контента.
𝟯. 𝗧𝗿𝗮𝗻𝘀𝗳𝗼𝗿𝗺𝗲𝗿-𝗯𝗮𝘀𝗲𝗱 𝗟𝗲𝗮𝗿𝗻𝗶𝗻𝗴: Sora использует трансформеры для обработки пространственно-временных патчей, эффективно улавливая сложные паттерны и динамику генераций. Этот метод использует способность трансформеров обрабатывать большие наборы данных и различные зависимости.
𝟰. 𝗗𝗶𝗳𝗳𝘂𝘀𝗶𝗼𝗻 𝗣𝗿𝗼𝗰𝗲𝘀𝘀: Диффузия используеся для уточнения зашумленных входных данных в детальные видео. Предсказывая лучшие версии патчей с каждой итерацией, Sora генерирует высококачественные видео, руководствуясь текстовыми промптами.
𝟱. 𝗙𝗹𝗲𝘅𝗶𝗯𝗹𝗲 𝗢𝘂𝘁𝗽𝘂𝘁 𝗚𝗲𝗻𝗲𝗿𝗮𝘁𝗶𝗼𝗻: Благодаря патч-ориентированному подходу Sora генерирует видео различных размеров и форм. Она может настраивать выходной сигнал под конкретные разрешения, соотношения сторон и продолжительность, что делает ее очень адаптируемой.
𝟲. 𝗘𝗺𝗲𝗿𝗴𝗲𝗻𝘁 𝗖𝗮𝗽𝗮𝗯𝗶𝗹𝗶𝘁𝗶𝗲𝘀: Масштабные тренировки Sora привели к появлению свойств, необходимых для генерации качетсвенного 3D-контента и симуляция взаимодействий.
https://openai.com/research/video-generation-models-as-world-simulators
ai_machinelearning_big_data
Вот что вам нужно знать о лучшей архитектуре модели преобразования текста в видео.
𝟭. 𝗗𝗮𝘁𝗮 𝗥𝗲𝗽𝗿𝗲𝘀𝗲𝗻𝘁𝗮𝘁𝗶𝗼𝗻: Sora преобразует визуальные данные в пространственно-временные патчи (spacetime patches), подобно токенизации в больших языковых моделях (LLM). Это позволяет масштабировать обучение на разнообразном визуальном контенте.
𝟮. 𝗖𝗼𝗺𝗽𝗿𝗲𝘀𝘀𝗶𝗼𝗻 𝗮𝗻𝗱 𝗣𝗮𝘁𝗰𝗵 𝗘𝘅𝘁𝗿𝗮𝗰𝘁𝗶𝗼𝗻: Видео компрессор уменьшает визуальные данные до сжатого латентного пространства, а затем разбивает его на пространственно-временные патчи. Эти патчи являются строительными блоками для обучения и создания контента.
𝟯. 𝗧𝗿𝗮𝗻𝘀𝗳𝗼𝗿𝗺𝗲𝗿-𝗯𝗮𝘀𝗲𝗱 𝗟𝗲𝗮𝗿𝗻𝗶𝗻𝗴: Sora использует трансформеры для обработки пространственно-временных патчей, эффективно улавливая сложные паттерны и динамику генераций. Этот метод использует способность трансформеров обрабатывать большие наборы данных и различные зависимости.
𝟰. 𝗗𝗶𝗳𝗳𝘂𝘀𝗶𝗼𝗻 𝗣𝗿𝗼𝗰𝗲𝘀𝘀: Диффузия используеся для уточнения зашумленных входных данных в детальные видео. Предсказывая лучшие версии патчей с каждой итерацией, Sora генерирует высококачественные видео, руководствуясь текстовыми промптами.
𝟱. 𝗙𝗹𝗲𝘅𝗶𝗯𝗹𝗲 𝗢𝘂𝘁𝗽𝘂𝘁 𝗚𝗲𝗻𝗲𝗿𝗮𝘁𝗶𝗼𝗻: Благодаря патч-ориентированному подходу Sora генерирует видео различных размеров и форм. Она может настраивать выходной сигнал под конкретные разрешения, соотношения сторон и продолжительность, что делает ее очень адаптируемой.
𝟲. 𝗘𝗺𝗲𝗿𝗴𝗲𝗻𝘁 𝗖𝗮𝗽𝗮𝗯𝗶𝗹𝗶𝘁𝗶𝗲𝘀: Масштабные тренировки Sora привели к появлению свойств, необходимых для генерации качетсвенного 3D-контента и симуляция взаимодействий.
https://openai.com/research/video-generation-models-as-world-simulators
ai_machinelearning_big_data
🔥41👍18🤯12❤5❤🔥2🥰2👏1
This media is not supported in your browser
VIEW IN TELEGRAM
💃 MagicDance: Realistic Human Dance
Video Generation with Motions & Facial Expressions Transfer
MagicDance - новый эффективный подход к созданию реалистичных видео с движением человека. Инструмент позволяет передавать движения и выражения лица без файнтюнинга, обеспечивая высокое качество генерации🕺.
▪page: https://boese0601.github.io/magicdance/
▪paper: https://arxiv.org/abs/2311.12052
▪code: https://github.com/Boese0601/MagicDance
▪jupyter: https://github.com/camenduru/MagicDance-jupyter
ai_machinelearning_big_data
Video Generation with Motions & Facial Expressions Transfer
MagicDance - новый эффективный подход к созданию реалистичных видео с движением человека. Инструмент позволяет передавать движения и выражения лица без файнтюнинга, обеспечивая высокое качество генерации🕺.
▪page: https://boese0601.github.io/magicdance/
▪paper: https://arxiv.org/abs/2311.12052
▪code: https://github.com/Boese0601/MagicDance
▪jupyter: https://github.com/camenduru/MagicDance-jupyter
ai_machinelearning_big_data
🤣24👍14🔥5❤4
This media is not supported in your browser
VIEW IN TELEGRAM
🧮 OpenMathInstruct-1: A 1.8 Million Math Instruction Tuning Dataset
OpenMathInstruct-1 - это новый синтетический датасет от
> Используются обучающие датасеты
> Для создания ланных используется
> Модель использует текстовые рассуждения + интерпретатор кода при генерации.
> Выпущены
> Лицензия Apache 2.0!
Блестящая работа команды Nvidia AI - 2024 год станет годом синтетических данных и еще более мощных моделей! 🔥
▪Dataset: https://huggingface.co/datasets/nvidia/OpenMathInstruct-1
▪Paper: https://huggingface.co/papers/2402.10176
ai_machinelearning_big_data
OpenMathInstruct-1 - это новый синтетический датасет от
NVIDIA
для настройки математических моделей, содержащий 1,8 млн пар "задача-решение".> Используются обучающие датасеты
GSM8K
и MATH
.> Для создания ланных используется
Mixtral 8x7B.
> Модель использует текстовые рассуждения + интерпретатор кода при генерации.
> Выпущены
LLama, CodeLlama, Mistral, Mixtral fine-tunes
.> Лицензия Apache 2.0!
Блестящая работа команды Nvidia AI - 2024 год станет годом синтетических данных и еще более мощных моделей! 🔥
▪Dataset: https://huggingface.co/datasets/nvidia/OpenMathInstruct-1
▪Paper: https://huggingface.co/papers/2402.10176
ai_machinelearning_big_data
👍28🔥15❤10
This media is not supported in your browser
VIEW IN TELEGRAM
🦾 Learning to Learn Faster from Human Feedback with Language Model Predictive Control
Новый фреймворк от
▪proj: https://robot-teaching.github.io
▪paper: https://arxiv.org/abs/2402.11450
▪code: https://colab.research.google.com/drive/1YcRN_kklw3cVVJNvgK_IEV6nDce9EJWK
ai_machinelearning_big_data
Новый фреймворк от
Google DeepMind
для, управленияя роботомами, с помощью ествественного языка. ▪proj: https://robot-teaching.github.io
▪paper: https://arxiv.org/abs/2402.11450
▪code: https://colab.research.google.com/drive/1YcRN_kklw3cVVJNvgK_IEV6nDce9EJWK
ai_machinelearning_big_data
👍28🔥10❤6
🔝 ByteDance presents SDXL-Lightning: a lightning fast 1024px text-to-image generation model
SDXL-Lightning - это молниеносная генеративная модель преобразования текста в изображение. Она позволяет генерировать высококачественные изображения размером 1024px за несколько шагов.
▪HF: https://huggingface.co/ByteDance/SDXL-Lightning
ai_machinelearning_big_data
SDXL-Lightning - это молниеносная генеративная модель преобразования текста в изображение. Она позволяет генерировать высококачественные изображения размером 1024px за несколько шагов.
▪HF: https://huggingface.co/ByteDance/SDXL-Lightning
ai_machinelearning_big_data
👍27❤10🔥7
This media is not supported in your browser
VIEW IN TELEGRAM
💫 Gemini великолепно анализирует входные данные и работает с ними.
Нейросети скормили видео с записью экрана по поиску квартиры на сайте Zillow. ИИ смог сгенерировать Selenium-код для автоматизации этой задачи и пошагово описал все, что делал.
Вот, что выдал Gemini, посмотрев видео по поиску квартиры:
"This code will open a Chrome browser, navigate to Zillow, enter "Cupertino, CA" in the search bar, click on the "For Rent" tab, set the price range to "Up to $3K", set the number of bedrooms to "2+", select the "Apartments/Condos/Co-ops" checkbox, click on the "Apply" button, wait for the results to load, print the results, and close the browser."
Посмотрите видео!
•Gemini
•Gemma opensource на основе Gemini.
•DeepMind Gemini 1.5 - An AI That Remembers!
ai_machinelearning_big_data
Нейросети скормили видео с записью экрана по поиску квартиры на сайте Zillow. ИИ смог сгенерировать Selenium-код для автоматизации этой задачи и пошагово описал все, что делал.
Вот, что выдал Gemini, посмотрев видео по поиску квартиры:
"This code will open a Chrome browser, navigate to Zillow, enter "Cupertino, CA" in the search bar, click on the "For Rent" tab, set the price range to "Up to $3K", set the number of bedrooms to "2+", select the "Apartments/Condos/Co-ops" checkbox, click on the "Apply" button, wait for the results to load, print the results, and close the browser."
Посмотрите видео!
•Gemini
•Gemma opensource на основе Gemini.
•DeepMind Gemini 1.5 - An AI That Remembers!
ai_machinelearning_big_data
❤38👍19🔥14
This media is not supported in your browser
VIEW IN TELEGRAM
SOTA🚀 YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information
🎉 Вышел YOLOv9 🎉
Новый SOTA для обнаружения объектов в реальном времени.
• Github
• Paper
• Hugging face
ai_machinelearning_big_data
🎉 Вышел YOLOv9 🎉
Новый SOTA для обнаружения объектов в реальном времени.
• Github
• Paper
• Hugging face
ai_machinelearning_big_data
👍56🔥13😁5❤4🍌1
This media is not supported in your browser
VIEW IN TELEGRAM
🔥 NVIDIA AI Foundation Models
Вы можете тестировать модели с открытым исходным кодом, используя NVIDIAAI.
Взаимодействуйте с новейшими современными API моделей ИИ, оптимизированными на базе ускоренных вычислений NVIDIA, прямо из браузера.
https://catalog.ngc.nvidia.com/ai-foundation-models
ai_machinelearning_big_data
Вы можете тестировать модели с открытым исходным кодом, используя NVIDIAAI.
Взаимодействуйте с новейшими современными API моделей ИИ, оптимизированными на базе ускоренных вычислений NVIDIA, прямо из браузера.
Gemma 7B, Llama 2 70B, Kosmos-2, Mixtral 8x7B Instruct, Stable Diffusion X
L и многое другое 🥳 https://catalog.ngc.nvidia.com/ai-foundation-models
ai_machinelearning_big_data
👍40🔥13❤6
🎓 Multi-HMR: Multi-Person Whole-Body Human Mesh Recovery in a Single Shot.
Multi-HMR - это простая, но эффективная модель , которая принимает на вход RGB-изображение и выполняет
▪Github
▪Paper
▪Dataset
ai_machinelearning_big_data
Multi-HMR - это простая, но эффективная модель , которая принимает на вход RGB-изображение и выполняет
3D-реконструкцию
нескольких людей в пространстве.▪Github
▪Paper
▪Dataset
ai_machinelearning_big_data
🔥23👍12❤6🍌4
This media is not supported in your browser
VIEW IN TELEGRAM
🩳 👚 OOTDiffusion: Outfitting Fusion based Latent Diffusion for Controllable Virtual Try-on 👖
Мощная модель латентной диффузии для контролируемой виртуальныой примерочной.
▪Github: https://github.com/levihsu/OOTDiffusion
▪Demo: https://ootd.ibot.cn
▪Jupyter: https://github.com/camenduru/OOTDiffusion-jupyter
ai_machinelearning_big_data
Мощная модель латентной диффузии для контролируемой виртуальныой примерочной.
▪Github: https://github.com/levihsu/OOTDiffusion
▪Demo: https://ootd.ibot.cn
▪Jupyter: https://github.com/camenduru/OOTDiffusion-jupyter
ai_machinelearning_big_data
🔥37👍25❤5🍌2
Media is too big
VIEW IN TELEGRAM
🔥 Новый бесплатный курс: Prompt Engineering with Llama 2 от Andrew YNg and и DeepLearning.AI
Llama 2 стала очень важной моделью для всего мира ИИ.
Llama - это не одна модель, а целая коллекция моделей. В этом курсе вы узнаете: - Узнаете о различиях между разными видами Llama 2 и о том, когда следует использовать каждый из них.
▪Вы также узнаете, как работают теги промпты для Llama, - как они могут помочь вам в повседневных задачах.
▪Научитесь использовть продвинутые промпты, например, промпты в виде нескольких скриншотов для классификации или промпты в виде цепочки мыслей для решения логических задач.
▪Научитесь использовть специализированные модели из коллекции Llama для решения конкретных задач, например
В курсе также рассказывается о том, как запустить Llama 2 локально на собственном компьютере.
📌 https://deeplearning.ai/short-courses/prompt-engineering-with-llama-2
ai_machinelearning_big_data
Llama 2 стала очень важной моделью для всего мира ИИ.
Llama - это не одна модель, а целая коллекция моделей. В этом курсе вы узнаете: - Узнаете о различиях между разными видами Llama 2 и о том, когда следует использовать каждый из них.
▪Вы также узнаете, как работают теги промпты для Llama, - как они могут помочь вам в повседневных задачах.
▪Научитесь использовть продвинутые промпты, например, промпты в виде нескольких скриншотов для классификации или промпты в виде цепочки мыслей для решения логических задач.
▪Научитесь использовть специализированные модели из коллекции Llama для решения конкретных задач, например
Code Llama,
помогающую писать, анализировать и улучшать код, и Llama Guard
, которая проверяет промпты и ответы моделей на наличие вредоносного содержимого. В курсе также рассказывается о том, как запустить Llama 2 локально на собственном компьютере.
📌 https://deeplearning.ai/short-courses/prompt-engineering-with-llama-2
ai_machinelearning_big_data
👍30🔥8❤6🍌2😁1
This media is not supported in your browser
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
⚡️ 7 самых важных релизов недели из мира ИИ:
Это была важная неделя для мира ИИ: анонсы от
1. Исследователи Alibaba представили EMO - ИИ, который качетсвенно анимирует статическое изображение человека с синхронизацей движения губ и лица.
2. Компания Lightricks представила LTX Studio - студию для создания фильмов с помощью ИИ.
Новинка позволяет креативщикам автоматически генерировать сценарии, редактируемые раскадровки и короткие видеоклипы.
Создание видео с помощью искусственного интеллекта становится все более продвинутым с каждым днем.
3. Компания Ideogram выпустила новую версию своей модели преобразования текста в изображение.
В первую очередь, это невероятная детализация текста, сгенерированного искусственным интеллектом и новая функция
4. Apple незаметно анонсировала ИИ обновления для iOS.
Судя по тому, как продвигаются исследования в области ИИ, скоро мы увидим крупное обновление ИИ для Siri.
Возможно, это будет следующий "ChatGPT" от Apple.
5. Компания Klarna только что опубликовала блог, в котором говорится, что с помощью искусственного интеллекта они заменят 700 сотрудников службы поддержки клиентов.
Сумасшедшая статистика:
- За последний месяц чатбот обработал 2,3 млн разговоров.
- Среднее время решения проблемы сократилось на 9 минут
- 40 млн долларов дополнительной прибыли в 2024 году
6. Adobe выпустила Project Music GenAI Control.
Этот инструмент, названный "музыкальным фотошопом", позволяет легко генерировать и редактировать аудио с помощью искусственного интеллекта, позволяя авторам создавать собственные музыкальные треки с помощью текстовых промптов.
7. Компания Pika Labs представила новую функцию синхронизации губ в своем генераторе видео с искусственным интеллектом.
Новая технология позволяет создавать крайне реалистичноные анимации на базе ElevenLabs.
ai_machinelearning_big_data
Это была важная неделя для мира ИИ: анонсы от
Alibaba, Lightricks, Ideogram, Apple, Adobe, OpenAI
и многих других.1. Исследователи Alibaba представили EMO - ИИ, который качетсвенно анимирует статическое изображение человека с синхронизацей движения губ и лица.
2. Компания Lightricks представила LTX Studio - студию для создания фильмов с помощью ИИ.
Новинка позволяет креативщикам автоматически генерировать сценарии, редактируемые раскадровки и короткие видеоклипы.
Создание видео с помощью искусственного интеллекта становится все более продвинутым с каждым днем.
3. Компания Ideogram выпустила новую версию своей модели преобразования текста в изображение.
В первую очередь, это невероятная детализация текста, сгенерированного искусственным интеллектом и новая функция
Magic Prompt,
кооораяп
одскажет, как их написать и получить максимально качественный результат.4. Apple незаметно анонсировала ИИ обновления для iOS.
Судя по тому, как продвигаются исследования в области ИИ, скоро мы увидим крупное обновление ИИ для Siri.
Возможно, это будет следующий "ChatGPT" от Apple.
5. Компания Klarna только что опубликовала блог, в котором говорится, что с помощью искусственного интеллекта они заменят 700 сотрудников службы поддержки клиентов.
Сумасшедшая статистика:
- За последний месяц чатбот обработал 2,3 млн разговоров.
- Среднее время решения проблемы сократилось на 9 минут
- 40 млн долларов дополнительной прибыли в 2024 году
6. Adobe выпустила Project Music GenAI Control.
Этот инструмент, названный "музыкальным фотошопом", позволяет легко генерировать и редактировать аудио с помощью искусственного интеллекта, позволяя авторам создавать собственные музыкальные треки с помощью текстовых промптов.
7. Компания Pika Labs представила новую функцию синхронизации губ в своем генераторе видео с искусственным интеллектом.
Новая технология позволяет создавать крайне реалистичноные анимации на базе ElevenLabs.
ai_machinelearning_big_data
👍35❤9🔥3🥰1😱1🍌1