Software Engineer Labdon
624 subscribers
43 photos
4 videos
2 files
795 links
👑 Software Labdon

حمایت مالی:
https://www.coffeete.ir/mrbardia72

ادمین:
@mrbardia72
Download Telegram
🔵 عنوان مقاله
The Automation Maturity Pyramid

🟢 خلاصه مقاله:
این هرم با عنوان The Automation Maturity Pyramid روشی از David Ingraham برای ارزیابی بلوغ اتوماسیون تست در چهار مرحله است: ایجاد اعتماد به نتایج تست‌ها، بازخورد کوتاه‌مدت و سریع در جریان توسعه، افزایش سرعت توسعه با تکیه بر تست‌های پایدار، و در نهایت بازخورد بلندمدت برای حفظ کیفیت در گذر زمان. ایده اصلی این است که اتوماسیون باید هدفمند باشد: ابتدا تست‌های قابل‌اعتماد و غیرلغزان برای مسیرهای حیاتی بسازیم، سپس بازخورد سریع در CI و روی هر تغییر فراهم کنیم، بعد با کاهش زمان چرخه و افزایش اطمینان، توسعه را شتاب دهیم، و در پایان با چک‌های دوره‌ای، سنجه‌های عملکرد و نشانه‌های تولید، سلامت بلندمدت سیستم را پایش کنیم. این چارچوب به تیم‌ها کمک می‌کند شکاف‌ها را بشناسند، سرمایه‌گذاری‌ها را اولویت‌بندی کنند و از دام‌هایی مثل تمرکز زودهنگام بر پوشش یا سرعت بدون اعتماد پرهیز کنند.

#TestAutomation #AutomationMaturity #SoftwareTesting #QualityEngineering #DevOps #CICD #FeedbackLoops #SoftwareDelivery

🟣لینک مقاله:
https://cur.at/syMd8RG?m=web


👑 @software_Labdon
🔵 عنوان مقاله
Supercharging Test Automation with Java Faker: Generating Realistic Test Data

🟢 خلاصه مقاله:
با استفاده از داده‌های واقع‌نما، تست‌ها خطاهای پنهان را بهتر آشکار می‌کنند و از شکنندگی ناشی از مقادیر ثابت دور می‌مانند. Java Faker یک کتابخانه سبک در Java است که نام، آدرس، ایمیل، داده‌های اینترنتی، تاریخ و زمان و موارد دیگر را با پشتیبانی از locale تولید می‌کند و با قابلیت seed، توازن میان واقع‌نمایی و تکرارپذیری را فراهم می‌سازد. این ابزار به‌سادگی در واحدتست‌ها و سناریوهای API و UI با JUnit، TestNG، Selenium و REST Assured ترکیب می‌شود تا فرم‌ها را با داده‌های معتبر پر کند و payloadهای واقعی بسازد. بهترین رویه‌ها شامل کنترل تصادفی بودن با seed، تطبیق با قوانین و قیود دامنه، حفظ یکپارچگی داده، تولید موارد مرزی و منفی، بومی‌سازی و پرهیز از تصادفی‌سازی بیش‌ازحد است. نتیجه، پوشش بهتر، پایداری بیشتر و نگه‌داری آسان‌تر است. Sajith Dilshan در این مرور نشان می‌دهد چگونه با تکیه بر Java Faker می‌توان خودکارسازی تست را توانمندتر کرد.

#TestAutomation #JavaFaker #TestData #SoftwareTesting #QA #Selenium #APITesting

🟣لینک مقاله:
https://cur.at/GmPnbFy?m=web


👑 @software_Labdon
1
🔵 عنوان مقاله
Testers: Stop Competing with AI. Start Pairing with It

🟢 خلاصه مقاله:
این مقاله می‌گوید به‌جای رقابت با AI، آن را به‌عنوان شریک کاری به کار بگیرید. مدل همکاری انسان–AI که توسط Rahul Parwal معرفی شده، به تسترها کمک می‌کند مرز کار انسان و کار قابل‌واگذاری به AI را مشخص کنند: انسان‌ها مسئول زمینه، تحلیل ریسک، قضاوت اخلاقی، استراتژی تست و ارتباط با ذی‌نفعان هستند؛ AI در مقیاس و سرعت می‌درخشد—ایده‌پردازی گسترده، ساخت دادهٔ تست، تحلیل لاگ‌ها، کشف الگوها و خودکارسازی تکراری‌ها. مقاله الگوهای جفت‌کاری عملی ارائه می‌دهد (ایده‌سازی با AI و پالایش انسانی، ردیابی و پوشش با کمک AI و اعتبارسنجی انسانی) و بر ریل‌گذاری‌های ضروری مثل محرمانگی، کنترل خطا/سوگیری و بازبینی انسانی تأکید دارد. نتیجه: کیفیت بهتر و تحویل سریع‌تر، با تمرکز بیشتر تسترها بر کارهای خلاق و اثرگذار.

#SoftwareTesting #AI #HumanAICollaboration #QualityEngineering #TestAutomation #ExploratoryTesting #QA

🟣لینک مقاله:
https://cur.at/zXAw6Td?m=web


👑 @software_Labdon
🔵 عنوان مقاله
Communicating quality to stakeholders: why testers get ignored in meetings (and how to change it)

🟢 خلاصه مقاله:
** تسترها در جلسات اغلب نادیده گرفته می‌شوند نه به‌دلیل بی‌اهمیت بودن کارشان، بلکه چون پیام کیفیت را به زبان ذی‌نفعان منتقل نمی‌کنند. به‌گفته Kat Obring، مشکل از جایی آغاز می‌شود که گزارش‌ها پر از جزئیات فنی و فهرست باگ‌هاست اما ارتباطی روشن با پیامدهای کسب‌وکاری ندارد. راه‌حل، ترجمه‌ی یافته‌ها به زبان تصمیم‌گیری است: هر ریسک را با اثر آن بر تجربه مشتری، هزینه، شهرت، انطباق یا زمان عرضه بیان کنید؛ ساختار روشن داشته باشید (زمینه، ریسک، شواهد، گزینه‌ها، توصیه، و درخواست صریح) و تا حد ممکن تأثیر و احتمال را کمّی کنید. به‌جای «نمی‌توانیم منتشر کنیم»، چند گزینه با مبادله‌ها ارائه دهید و توصیه‌ی مشخص بدهید. از بصری‌سازی‌های ساده و دموهای کوتاه استفاده کنید، زمان‌بندی مناسبی برای طرح ریسک‌ها داشته باشید، در جلسه فعالانه گوش دهید و پس از جلسه جمع‌بندی قابل‌اقدام ارسال کنید. در بلندمدت با حضور زودهنگام در چرخه توسعه و تأکید بر مسئولیت مشترک کیفیت، تصویر تست از «ترمز» به «ابزار تصمیم‌گیری بهتر» تغییر می‌کند.

#کیفیت
#تست_نرم‌افزار
#ارتباط_موثر
#ذی‌نفعان
#مدیریت_ریسک
#توسعه_چابک
#SoftwareTesting
#ProductManagement

🟣لینک مقاله:
https://cur.at/htvifhX?m=web


👑 @software_Labdon
🔵 عنوان مقاله
Implement POM design pattern in the Automation test framework

🟢 خلاصه مقاله:
این مقاله با تاکید بر اینکه Page Object Model یک الگوی رایج اما چندشکلی در تست خودکار است، نمونه‌ای عملی از پیاده‌سازی آن را در Python توسط Đinh Công Cảnh نشان می‌دهد. در این رویکرد، یک BasePage برای قابلیت‌های مشترک (مثل جست‌وجوی عناصر و مدیریت waits) و کلاس‌های Page برای هر صفحه/کامپوننت با متدهای سطح‌بالا تعریف می‌شوند؛ تست‌ها به‌جای کار با driver، این متدها را فراخوانی می‌کنند تا خوانا، پایدار و قابل نگه‌داری باشند. نکات کلیدی شامل جداسازی مسئولیت‌ها، پنهان‌سازی locators، متمرکزسازی waits برای کاهش flakiness، سازمان‌دهی ساختار پروژه و گزارش‌دهی مؤثر است. در عین حال به موازنه‌ها نیز اشاره می‌شود: POM در پروژه‌های بزرگ و در حال تغییر سودمندتر است و در موارد کوچک ممکن است اضافی به نظر برسد؛ بنابراین باید متناسب با ابزار، CI/CD و نیازهای تیم اتخاذ شود.

#PageObjectModel #POM #TestAutomation #Python #Selenium #QA #AutomationFramework #SoftwareTesting

🟣لینک مقاله:
https://cur.at/7s1or7a?m=web


👑 @software_Labdon