Software Engineer Labdon
624 subscribers
43 photos
4 videos
2 files
796 links
👑 Software Labdon

حمایت مالی:
https://www.coffeete.ir/mrbardia72

ادمین:
@mrbardia72
Download Telegram
🔵 عنوان مقاله
I Integrated AI in a Listener to Heal Locators in The Real Time

🟢 خلاصه مقاله:
عبدالقادر حسینی نشان می‌دهد چگونه می‌توان با ادغام AI در یک listener، مشکل ناپایداری تست‌های موبایل را با «خودترمیمی لوکیتورها» در لحظه کاهش داد. وقتی یافتن یک المنت به‌دلیل تغییرات UI شکست می‌خورد، listener خطا را رهگیری می‌کند، ماژول AI بر اساس سیگنال‌های مختلف (ویژگی‌ها، برچسب‌های دسترسی، شباهت متنی، ساختار صفحه و داده‌های تاریخی) یک لوکیتور جایگزین با امتیاز اطمینان پیشنهاد می‌دهد و در صورت موفقیت، آن را به‌صورت خودکار به‌روزرسانی می‌کند. با اعمال آستانه اطمینان، لاگ شفاف و امکان بازگشت، این روش بدون افزایش ریسک، پایداری CI را بالا می‌برد و هزینه نگه‌داری تست‌ها را کم می‌کند. الگوی ارائه‌شده قابل تعمیم به فراتر از موبایل است و پیشنهاد می‌شود ابتدا در حالت فقط-پیشنهاد اجرا، سپس با تنظیم آستانه‌ها، به حالت خودترمیمی خودکار برای موارد با اطمینان بالا منتقل شود.

#AI #TestAutomation #MobileTesting #SelfHealingLocators #FlakyTests #QualityEngineering #DevOps #CICD

🟣لینک مقاله:
https://cur.at/s6YdwTw?m=web


👑 @software_Labdon
🔵 عنوان مقاله
If It's Not Written Down, Did You Really Test It?

🟢 خلاصه مقاله:
اگر چیزی ثبت نشود، اثبات‌پذیری و تکرارپذیری تست زیر سوال می‌رود. Marina Jordão هشدار می‌دهد حذف «مدیریت تست» شاید کار را سریع‌تر نشان دهد، اما در عمل به افزایش ریسک، خطاهای تکراری، پوشش ناقص سناریوها و کاهش اعتماد ذی‌نفعان به QA منجر می‌شود. راه‌حل او، افزودن ساختارِ سبک و مؤثر است: یک استراتژی حداقلی برای محدوده و ریسک‌ها، ردیابی تست‌ها به نیازمندی‌ها، چک‌لیست یا چارتر برای تست اکتشافی همراه با یادداشت‌های خلاصه و شواهد، استانداردسازی شدت/اولویت، و استفاده از ابزارهای یکپارچه با CI/CD. با قرار دادن مستندسازی در Definition of Done و بهبود مستمر مبتنی بر داده، تیم‌ها بدون بروکراسی سنگین، کیفیت شفاف و پایدار را حفظ می‌کنند.

#QA
#TestManagement
#مستندسازی
#آزمایش_نرم‌افزار
#کیفیت_نرم‌افزار
#توسعه_چابک
#DevOps

🟣لینک مقاله:
https://cur.at/QQmdklz?m=web


👑 @software_Labdon
🔵 عنوان مقاله
Building a Solid Foundation for Performance Testing

🟢 خلاصه مقاله:
این یادداشت توضیح می‌دهد که پیش از اجرای هر نوع تست کارایی، باید زیرساخت فکری و عملی درستی بسازیم تا نتایج قابل اتکا باشند. به گفته‌ی Yanming Zhai، گام‌های کلیدی مستقل از ابزارند: هدف‌ها و معیارهای موفقیت را مشخص کنید (مثل پرسن‌تایل‌های زمان پاسخ، توان عملیاتی، نرخ خطا، و SLA/SLO)، سناریوهای کاربری مهم و الگوهای بار واقعی را تعریف کنید، معماری و وابستگی‌ها را بشناسید و محیطی نزدیک به تولید بسازید. داده‌ی تست واقعی آماده کنید، وضعیت کش و گرم‌کردن را کنترل کنید، و پارامترهای اجرای تست مثل ramp-up، مدت پایدار و think time را دقیق تعیین کنید.
رصدپذیری را جدی بگیرید: متریک‌ها، لاگ‌ها و تِرِیس‌ها را انتهابه‌انتها جمع‌آوری کنید؛ منابع زیرساخت، سرویس‌های خارجی و شبکه را زیر نظر داشته باشید؛ نسخه‌ها و تنظیمات را ثبت کنید تا آزمون‌ها قابل تکرار باشند. اسکریپت‌های پایدار بنویسید: احراز هویت و نشست را درست مدیریت کنید، پارامتری‌سازی و correlation انجام دهید، رفتار کاربر را واقع‌نما کنید و مطمئن شوید گلوگاه سمت کلاینت یا شبکه نیست. پیش‌اجرای سبک و بازبینی همتایان خطاهای پنهان را کم می‌کند.
در نهایت، تست کارایی یک فعالیت تیمی است: با تیم‌های توسعه، SRE/ops و محصول هم‌راستا شوید، در صورت نیاز در CI/CD ادغام کنید، و گزارش‌دهی شفاف داشته باشید؛ نتایج را نسبت به baseline و SLO بسنجید و آن‌ها را به اقدام‌های مشخص برای بهینه‌سازی و ظرفیت تبدیل کنید. با رعایت این اصول، انتخاب هر ابزاری نتیجه‌های سریع‌تر و قابل اعتمادتر به‌همراه دارد.

#تست_کارایی #تست_بار #مهندسی_عملکرد #DevOps #Observability #SLA #کیفیت_نرم‌افزار #PerformanceTesting

🟣لینک مقاله:
https://cur.at/ybKggdo?m=web


👑 @software_Labdon
🔵 عنوان مقاله
Developing the Right Test Documentation

🟢 خلاصه مقاله:
مستندسازی تست کار جذابی نیست، اما اگر با نگاه به هدف و مخاطب انجام شود، به تصمیم‌گیری و هم‌راستاسازی تیم کمک جدی می‌کند. توصیه‌های Chris Kenst بر مستندات سبک، زنده و متصل به کار روزمره تأکید دارد: تولید حداقل آثار مؤثر مثل چک‌لیست، چارتر، نقشه پوشش و فهرست ریسک‌ها؛ پیوند دادن آن‌ها با استراتژی تست، ریسک و نتایج CI؛ خودکارسازی جمع‌آوری شواهد؛ و بازبینی و هرس مداوم برای حذف زوائد. در محیط‌های مقرراتی، فقط لایه‌های لازم مثل نسخه‌بندی، تأییدها و حداقل ماتریس رهگیری را اضافه کنید، بدون قربانی کردن شفافیت. معیار موفقیت ساده است: آیا مستندات باعث کاهش پرسش‌های تکراری، تسریع عیب‌یابی و تسهیل آنبوردینگ می‌شود یا نه.

#تست_نرم‌افزار #مستندسازی #کیفیت_نرم‌افزار #QA #توسعه_نرم‌افزار #مدیریت_ریسک #Agile #DevOps

🟣لینک مقاله:
https://cur.at/JfTbdWG?m=web


👑 @software_Labdon
🔵 عنوان مقاله
AI Is Quietly Rewriting the Career Map for QA Engineers

🟢 خلاصه مقاله:
** هوش مصنوعی مسیر شغلی مهندسان QA را دگرگون کرده و نقش «تستر» را از اجرای تست‌ها به «ارکستراسیون» یک سامانه هوشمند از ابزارها، داده‌ها و ایجنت‌ها تغییر می‌دهد. به‌گفته Ryan Craven، ارزش اصلی QA در طراحی و نظارت بر پایپ‌لاین کیفیت است: انتخاب و اتصال ابزارها، تولید و اولویت‌بندی تست با AI، ایجاد گاردریل‌ها، مدیریت داده و بستن درگاه‌های انتشار بر اساس ریسک کسب‌وکار. مهارت‌ها هم توسعه می‌یابد: از اتوماسیون به Prompt Design، ارزیابی مدل، ایمنی، مدیریت داده، سنجش پوشش سناریویی، و تسلط بر CI/CD، Observability و Feature Flags. کار روزمره شامل تولید و پالایش تست‌های AI، کاهش خطاهای مثبت کاذب، خودترمیمی تست‌های flaky، استفاده از تله‌متری کاربر و بستن حلقه بازخورد تولید است. حاکمیت داده، حریم خصوصی، سوگیری و بازتولیدپذیری تصمیم‌های AI ضروری می‌شود و Human-in-the-loop برای تغییرات پرریسک باقی می‌ماند. عنوان‌های تازه‌ای مانند Quality Platform Engineer، QA Orchestrator و AI Test Strategist شکل می‌گیرد و مرز کار ارشد با SRE و Platform Engineering همپوشانی می‌یابد. جمع‌بندی: QA از اجرای تست‌ها به هماهنگ‌سازی انسان و AI برای ارائه کیفیت با سرعت و مقیاس حرکت می‌کند.

#AI #QA #SoftwareTesting #TestAutomation #QualityEngineering #DevOps #AIOps #CareerDevelopment

🟣لینک مقاله:
https://cur.at/bIOtF9U?m=web


👑 @software_Labdon
👍1
🔵 عنوان مقاله
Looking for AI that helps write and run automated UI tests (Playwright + Jira stack)

🟢 خلاصه مقاله:
** این بحث درباره نیاز تیم‌ها به بهره‌گیری از AI در خودکارسازی تست‌های UI با محوریت Playwright و Jira است. کاربران Reddit راهکارهایی را مطرح می‌کنند: تبدیل داستان‌ها و معیارهای پذیرش در Jira به سناریوهای تست و کد Playwright با کمک LLMها، استفاده از locatorهای پایدار و Page Object Model، و تغذیه AI با دانش دامنه و اجزای UI. در اجرای تست نیز به نگهداری اهمیت می‌دهند: پیشنهاد رفع شکست‌های ناشی از تغییر selectorها، کاهش flakiness، خلاصه‌سازی خطاها با اسکرین‌شات و لاگ، و ایجاد خودکار تیکت‌های Jira با جزئیات بازتولید. یک محور دیگر، اتصال به CI/CD و مدیریت داده/محیط تست با رعایت امنیت و گاردریل‌ها برای سنجش ROI است. جمع‌بندی این است که ابزار یگانه‌ای وجود ندارد؛ مسیر عملی، شروع کوچک، رعایت الگوهای مهندسی و استفاده کمکی از AI در کنار Playwright و Jira است.

#Playwright #Jira #UIAutomation #AI #Testing #QA #DevOps

🟣لینک مقاله:
https://cur.at/7CKr1ju?m=web


👑 @software_Labdon
🔵 عنوان مقاله
Running Lighthouse CI in a Lightweight Docker Container

🟢 خلاصه مقاله:
**این مطلب نشان می‌دهد چگونه می‌توان Lighthouse CI را در یک Docker کانتینر سبک اجرا کرد تا سنجش عملکرد وب‌اپ‌ها به‌صورت خودکار و قابل‌اتکا در CI انجام شود. ایده اصلی، ساخت یک ایمیج کوچک (مثلاً بر پایه Alpine + Node) با CLI مربوط به Lighthouse CI و یک Chromium هدلس است تا روی GitHub Actions، GitLab CI، یا CircleCI کاملاً یکسان عمل کند و زمان راه‌اندازی و هزینه‌های CI را پایین نگه دارد. در خط لوله، پس از build و serve کردن برنامه (یا هدف‌گیری یک URL مستقر)، کانتینر اجرا می‌شود، معیارهایی مانند LCP، CLS و TBT را استخراج می‌کند، گزارش‌های HTML/JSON تولید می‌کند، و با baseline و بودجه‌های عملکردی مقایسه می‌کند تا در صورت عقب‌گرد یا عبور از آستانه‌ها، build را fail کند. برای پایداری نتایج، باید شبکه و CPU را شبیه‌سازی (throttle) کرد، cacheها را بین اجراها نگه داشت، به‌صورت non-root اجرا شد و تنها در صورت نیاز از پرچم‌هایی مثل no-sandbox استفاده کرد. این چیدمان به‌راحتی در PRها برای gate کردن mergeها و نیز در اجرای شبانه روی محیط production قابل استفاده است و در نهایت یک سازوکار سبک، تکرارپذیر و کم‌هزینه برای کنترل دائمی عملکرد ارائه می‌دهد.

#Lighthouse #LighthouseCI #Docker #WebPerformance #CI #DevOps #PerformanceBudgets #ContinuousIntegration

🟣لینک مقاله:
https://cur.at/ghYEsiF?m=web


👑 @software_Labdon
🔵 عنوان مقاله
Secrets Behind 3 Years of Automation Success

🟢 خلاصه مقاله:
Nikolay Advolodkin از Oles Nikaniuk دعوت کرده تا تجربه سه سال موفقیت پایدار در خودکارسازی تست را شرح دهد؛ تمرکزشان بر استراتژی بلندمدت است: انتخاب هوشمندانه ابزارها، تعریف ترکیب درست انواع تست‌ها (با تکیه بر لایه‌های پایین‌تر و مسیرهای حیاتی در UI)، و یکپارچه‌سازی مؤثر با CI/CD برای بازخورد سریع. آن‌ها بر مدیریت دادهٔ تست، کاهش flakyها، اجرای موازی، محیط‌های موقتی و گزارش‌دهی شفاف تأکید می‌کنند و با طراحی ماژولار، بازاستفاده از کتابخانه‌ها، مستندسازی، بازبینی کد و سنجه‌های عملی (پایداری، زمان رفع، پوشش، و زمان عبور در پایپ‌لاین) پایداری و ROI را حفظ می‌کنند. بخش مهمی از موفقیت به فرهنگ همکاری بین توسعه، QA و DevOps، مالکیت مشترک کیفیت و انتشار بهترین رویه‌ها برمی‌گردد. درس‌های کلیدی: کیفیت را بر کمیت ترجیح دهید، تا پایدار شدن جریان‌های متغیر سراغ خودکارسازی آن‌ها نروید، تست‌ها را نزدیک به کد نگه دارید، از feature flagها برای جداسازی انتشار و اعتبارسنجی استفاده کنید، و از همان ابتدا روی زیرساخت و مشاهده‌پذیری سرمایه‌گذاری کنید.

#TestAutomation #CICD #QualityEngineering #DevOps #SoftwareTesting #AutomationStrategy #TestingTools

🟣لینک مقاله:
https://cur.at/sEMpr5K?m=web


👑 @software_Labdon