Software Engineer Labdon
601 subscribers
43 photos
4 videos
2 files
757 links
👑 Software Labdon

حمایت مالی:
https://www.coffeete.ir/mrbardia72

ادمین:
@mrbardia72
Download Telegram
🔵 عنوان مقاله
Finally: Unit Testing for LLMs That Doesn't Require a PhD or $100K Budget

🟢 خلاصه مقاله:
** دکتر Ernesto Lee نشان می‌دهد برای ساخت اپلیکیشن‌های مبتنی بر LLM لازم نیست PhD یا بودجه‌های بسیار بزرگ داشته باشید تا تست خودکار جدی و مؤثر پیاده کنید. ایده اصلی این است که هر prompt، chain و فراخوانی ابزار را مثل یک واحد مستقل با مشخصات روشن ببینید و برای آن‌ها تست بنویسید: از اعتبارسنجی ساختار خروجی (مثلاً JSON Schema) و الزامات فیلدها، تا چک‌های ایمنی/سیاست و نمونه‌های طلایی دامنه‌ای. با snapshot test، داده‌های نمونه کم‌حجم اما پوشش‌دهنده لبه‌ها، و mock/stub برای وابستگی‌های خارجی، تست‌ها سریع، ارزان و قابل تکرار می‌مانند.

برای کنترل هزینه و نوسان، می‌توان پاسخ‌ها را cache کرد، بیشتر تست‌ها را با temperature=0 اجرا نمود، محدودیت توکن گذاشت، و مجموعه تست‌های «سریع» را از ارزیابی‌های «سنگین‌تر» دوره‌ای جدا کرد. نسخه‌دهی به promptها و داده‌های طلایی، گزارش‌کردن معیارها و اتصال این چرخه به CI باعث می‌شود هر تغییر کد یا prompt فوراً ارزیابی شود و رگرسیون‌ها دیده شوند. در صورت شکست تست، سریع مشخص کنید مشکل از تغییر prompt است، drift مدل بالادستی یا وابستگی ابزار، و همان یادگیری را به تست‌ها برگردانید.

نتیجه این رویکرد، چرخه توسعه سریع‌تر با اطمینان بیشتر و هزینه کنترل‌شده است. پیام Lee روشن است: Unit Testing عملی و مقیاس‌پذیر برای LLMها در دسترس همه تیم‌هاست، نه فقط تیم‌های بزرگ.

#LLM
#UnitTesting
#AIEngineering
#TestingAutomation
#MLOps
#PromptEngineering
#ContinuousIntegration
#QualityAssurance

🟣لینک مقاله:
https://cur.at/YHqFc9m?m=web


👑 @software_Labdon
2
🔵 عنوان مقاله
How We Utilize AI Agents in Our Testing and Quality Processes

🟢 خلاصه مقاله:
این مقاله با روایت Utku Kılınçcı چهار کاربرد عملی از به‌کارگیری AI agents در تست و تضمین کیفیت را توضیح می‌دهد: ۱) تبدیل نیازمندی‌ها به تست‌های قابل اجرا و به‌روزرسانی مداوم سبد تست با تغییرات مشخصات، ۲) نقش همکار اکتشافی برای کشف سناریوهای مرزی، ثبت شواهد و بازتولید مشکل، ۳) تحلیل و اولویت‌بندی باگ‌ها از طریق خلاصه‌سازی لاگ‌ها، خوشه‌بندی خطاها و ارائه سرنخ‌های ریشه‌یابی، و ۴) بهبود پایداری رگرسیون و درگاه‌های کیفی CI با شناسایی تست‌های flaky، پیشنهاد خوددرمانی و بهینه‌سازی پایپ‌لاین. در همه موارد، نظارت انسانی، رعایت حریم داده و سنجش نتایج (پوشش، MTTR، روند flakiness و زمان چرخه) ضروری است. نتیجه: پذیرش تدریجی AI agents روی مسائل واقعی، سرعت، پایداری و پوشش تست را به‌طور ملموس افزایش می‌دهد بی‌آنکه مالکیت کیفیت را تضعیف کند.

#SoftwareTesting #AIagents #QualityAssurance #TestAutomation #BugTriage #ContinuousIntegration #SoftwareQuality #DevOps

🟣لینک مقاله:
https://cur.at/qRpZzn9?m=web


👑 @software_Labdon