RUSmicro
4.95K subscribers
1.49K photos
20 videos
28 files
5.08K links
Новости микроэлектроники, электроники и вычислительной техники. Поддержка @abloud https://t.iss.one/abloudrealtime/6767
Комментарии и обсуждения публикаций доступны участникам группы: https://t.iss.one/+MIyp50MnfZRlODgy
Download Telegram
🔬 Память. MRAM

Как улучшить MRAM?

В статье "Субвольтовое переключение наноразмерных управляемых напряжением перпендикулярных магнитных туннельных переходов", опубликованной 14 ноября в журнале Communications Materials, Педрам Халили из Northwestern Engineering рассматривает две области, в которых разработчики сталкиваются с серьезными проблемами: плотность (бит на единицу площади) и энергия (энергия на операцию).

Ключевая новая технология, которая может дать возможность технологического развития, это магнитная память с произвольным доступом (MRAM), которая сочетает скорость, долговечность и энергонезависимость, что делает ее привлекательной альтернативой для существующей и других видов появляющейся памяти.

Группа Халили активно занимается разработкой материалов и устройств для создания MRAM. Один из подходов к созданию MRAM - это память, управляемая электрическими токами. Разработчики памяти на этом принципе сталкиваются двумя ограничениями - насколько малой может быть энергия на операцию и насколько близко друг к другу можно разместить ячейки, при том, что окружающие транзисторы должны быть достаточно большими, чтобы обеспечить необходимую силу тока.

Халили и его команда разработали альтернативную технологию MRAM (VCM), которая не использует электрические токи для переключения состояния ячеек магнитной памяти.

Эта технология позволяет масштабировать MRAM до гораздо более высокой плотности, что сейчас и требуется от устройств твердотельной памяти. Разработка VCM еще не завершена. Пока что проблемой является то, что экспериментальным устройствам MRAM VCM для переключения нужно около 2 В или более, что считается слишком большим показателем, поскольку современные микросхемы работают с напряжением менее 1 В.

Команда Халили разработала новую структуру материала для MRAM VCM с более высокой чувствительностью магнитных свойств к приложенному напряжению, что позволяет переключать состояния ячеек при меньшем напряжении, чем ранее. Важно отметить, что эта структура одновременно обладает другими важными атрибутами запоминающего устройства, включая высокий коэффициент включения/выключения (коэффициент туннельного магнитного сопротивления - TMR), и способностью выдерживать высокие температуры обработки.

В результате ученым удалось показать переключение VCM напряжением менее 1 В. Кроме того, была возможность организовать сравнительно плотную структуру VCM с размером 30 нм.

Это открывает дорогу к попыткам коммерческого внедрения технологии MRAM для создания элементов современной памяти. Кроме того, из-за высокой чувствительности магнитных свойств к приложенном напряжению, новая структура может быть использована в различных магнитных наноустройствах, например, в датчиках магнитного поля, в микроволновых детекторах, устройствах сбора энергии в сверхмаломощных системах.

#микроэлектроника #полупроводники #устройствапамяти #MRAM #память #технологии
🇯🇵 Память. MRAM. Разработки. Япония

В Университете Осака разработали прототип памяти MRAM с управлением электрическим полем, а не электрическим током

MRAM – одно из направлений, которое считается потенциально перспективным в плане создания замены для традиционных решений RAM. В пользу MRAM – высокая скорость работы, высокая емкость, повышенная долговечность и энергонезависимое хранение данных.

В RAM для хранения данных требуется постоянное энергопитание, обновляющее заряд в конденсаторах. В MRAM магнитные состояния стабильны и не требуют постоянной регенерации. С другой стороны, для переключения вектора намагниченности в разработках на основе управления электрическим током, требуется сравнительно большой ток, что не устраивает индустрию.

В Университете Осаки за основу MRAM нового типа взяли «мультиферроидную гетероструктуру», которую можно переключать электрическим полем. Об эффективности этой структуры позволяет судить обратный магнитоэлектрический коэффициент связи (CME). Первоначально ученые добились коэффициента CME более 10^-5 с/м на основе гетероструктуры Co2FeSi. Далее, чтобы повысить стабильность конфигурации, между пьезоэлектрическим и ферромагнитными слоями ввели тонкий слой ванадия (V). Это позволило сохранить высокий CME, еще более его увеличив, (что хорошо, так речь идет о более высоком магнитном отклике), и, основное – энергонезависимое двоичное состояние, не требующее приложения электрического поля для сохранности данных.

В теории, это создает основу для создания практических устройств ME-MRAM.

Темой MRAM заняты не только в Японии, но также практически о всех странах, обладающих «продвинутой» наукой в области микроэлектроники – США, Китае, России. В разработке MRAM VCM ученые из Northwestern Engineering, США, также отказались от использования тока, добившись в 2022 году возможности переключения состояний при приложении напряжений менее 1В.

@RUSmicro по материалам Research at Osaka University , картинка - T. Usami

#MRAM #память
🔬 Технологии памяти. SOT-MRAM

Устройства SOT-MRAM были определены как потенциальные кандидаты на замену SRAM в приложениях кэша последнего уровня

Бельгийская Imec решила некоторые из оставшихся проблем, приблизив технологию к реальным спецификациям. Перепроектирование стека материалов MTJ привело к более надежному переключению на уровне устройства и большей устойчивости к внешним магнитным воздействиям.

Дополнительное исследование магнитной устойчивости выявило полезные идеи о том, как можно будет защитить устройства от внешних магнитных полей. Наконец, демонстрация функционального массива представляет собой веху на пути к промышленному внедрению.

Кому интереснее подробнее - здесь перевод. Картинки здесь - для привлечения внимания, в тексте они расставлены по месту.

@RUSmicro

#MRAM #SOTMRAM #RAM #ОЗУ #горизонты #наука