FSCP
15.3K subscribers
31.6K photos
4.09K videos
873 files
81.6K links
another filter bubble канал изначально созданный несколькими друзьями чтобы делиться копипастой, иногда оценочным суждением

технологии, деньги, социум

редакция @id9QGq_bot
реклама @johneditor
в будущее возьмут не всех
выводы самостоятельно

мир меняется
Download Telegram
Google: Agent2Agent Protocol (A2A)

Google захотела сделать свой MCP протокол, только с крупными компаниями. Готово.

Назвали его A2A (Agent2Agent). Это открытый стандарт для обмена информацией между ИИ-агентами, работающими в разных системах. Он использует технологии HTTP, SSE и JSON-RPC для упрощения интеграции в существующую инфраструктуру.

Основные моменты:
(1) Dynamic Capability Discovery - агенты обмениваются данными через JSON-Agent Card, что позволяет выбирать подходящего исполнителя задачи.

(2) Task-Centric Communication - протокол работает с задачами, у которых есть свой жизненный цикл. A2A поддерживает как быстрые операции, так и долгосрочные процессы с обратной связью и уведомлениями.

(3) Security (за что критиковали MCP) - продуманы средства аутентификации и авторизации для защиты данных.

(4) Мультимодальность - обмен информацией в виде текста, аудио или видео.

В теории, общее назначение A2A - упростить автоматизацию и интеграцию процессов в корпоративных системах. Однако на HN люди уже высказывались насчет сложности протокола и его влияния на контроль над данными. Мол, нагородили всякого, лишь бы рынок отжевать.

Мне кажется, с такой компанией оно может и взлететь. Но из-за сложности и непредсказуемости систем лететь будет так себе.

Почитать доки можно тут.

Ваш, @llm_under_hood 🤗

_______
Источник | #llm_under_hood
👍1🤯1🆒1
OpenAI Codex - по ощущениям похоже на Deep Research в своих проектах

Подключаешь к Github, даешь доступ к проекту и запускаешь задачи. И оно что-то там крутит и копошится, примерно как o1 pro / Deep Research. Только вместо поиска в сети оно работает с кодом в контейнере - запускает утилиты и пытается прогонять тесты (если они есть). Цепочку рассуждений можно проверить.

По результатам - создает Pull Request с изменениями, который можно просмотреть и отправить обратно в Github.

Потенциально выглядит весьма интересно. Deep Research и планировщику OpenAI я доверяю. А тут прямо можно поставить в очередь ряд задач и переключиться на другие дела.

А как это в сравнении с Cursor.sh?

Как говорят люди, это аналогично по качеству Cursor + Gemini 2.5-pro. Но возможность удобно и легко запускать параллельные задачи - это что-то новое (перевод цитаты с HN):

По ощущениям, это словно младший инженер на стероидах: достаточно указать файл или функцию и описать необходимое изменение, после чего модель подготовит основную структуру пул-реквеста. Всё равно приходится делать много работы, чтобы довести результат до продакшн-уровня, однако теперь у вас как будто в распоряжении бесконечное число младших разработчиков, каждый из которых занимается своей задачей.


Ваш, @llm_under_hood 🤗

_______
Источник | #llm_under_hood
👍4👏1
Как мне OpenAI сегодня сэкономил 8 часов

Я недавно упоминал кейс про 700000 строчек дремучего 4GL кода 30-летней давности. Этот код надо переписать на Java/Kotlin так, чтобы пользователи в 13 странах не заметили подмены и продолжали работать как и раньше.

Чтобы начать оценивать реальность переписывания, надо самостоятельно запустить этот монолит. И это при том, что документацию про запуск в тендер не включили, есть только git с исходниками. Про один из параметров запуска сказать забыли, а он срабатывает при обращении системы к служебным таблицам, куда тоже нет доступа. А БД - файловая, работает по хитрому протоколу через VPN, либо через JDBC, который прикручен сбоку.

При этом ни среду программирования, ни язык я раньше в глаза не видел. Да и вообще специалисты в них уже почти все на пенсии (почему и так горит переписывание).

Сегодня ChatGPT помог за несколько часов благополучно разобраться в коде, найти точки входа, отладить проблемы и запустить систему. Без чьей-либо помощи.

Запросы в ChatGPT выглядели примерно так:
(обращаем внимание на то, как c каждым ответом от ChatGPT понимание происходящего становится лучше)

(1) Вот что это вообще?
(2) Вот тебе список файлов и папок в верхних уровнях проекта. С какой стороны это запускать?
(3) Ну поставил я среду для разработки, какой скрипт наиболее вероятен в качестве точки входа?
(4) Скрипт ругается на отсутствие БД. Как поставить драйвера Progress 4GL под Windows?
(5) В чем различие между JDBC и ABL подключением к БД? Как проще пробросить настройки в сессию?
(6) Вот тебе входной скрипт ABL и релевантные параметры. Помоги отладить причину, почему терминал не пропускает мой логин.
(7) Встрой в приложение отладочное окно, которое покажет статус авторизации моего тестового логина в системной таблице и в ее второй версии от 2008 года
(8) Вот выхлоп отладочного окна. Выдай пару вариантов, почему у меня логин с валидным паролем может не проходить
(9) Напиши ABL скрипт, который достанет _Domain-name для моего пользователя из системной таблицы _Users (OE11+). JDBC не пользуйся - оттуда доступ закрыт.
(10) Как пробросить параметр SESSION:ICFPARAMETER в приложение ABL, запускаемое из PDSOE?

В принципе, я бы осилил весь процесс и сам, но убил бы пару дней на чтение форумов, устаревшей документации и освоение базового синтаксиса 4GL в контексте ABL и терминальных приложений.

А так, ChatGPT + DeepResearch просто за пару часов провели меня за ручку до поставленной цели.

Ваш, @llm_under_hood 🤗

_______
Источник | #llm_under_hood
@F_S_C_P

▪️Генерируй картинки в боте:
Flux + MidJourney v7
4🤮4👍2🔥1👌1🤓1