FSCP
17.3K subscribers
30.5K photos
3.55K videos
862 files
78K links
another filter bubble канал изначально созданный несколькими друзьями чтобы делиться копипастой, иногда оценочным суждением

технологии, деньги, социум

редакция @id9QGq_bot
реклама @johneditor
в будущее возьмут не всех
выводы самостоятельно

мир меняется
Download Telegram
Наняли бы вы на работу Океан Соляриса?
Три капкана на пути внедрения генеративного ИИ.

Этот пост полезно прочесть всем руководителям, обдумывающим перспективы «найма» генеративного ИИ для задействования его мощного интеллектуального ресурса в своей работе.
Представьте себе ситуацию:
• Вы – руководитель.
• Ваши кадровики предлагают вам кандидатуру чрезвычайно компетентного нового сотрудника - по внешним отзывам и описанию кадровиков, разносторонне способного полимата, обладающего знаниями в широчайшем спектре областей и навыками многих профессий.
• Но и на солнце есть пятна. У этого кандидата есть три настораживающих «пунктика». Эдакие три инаковости, кардинально отличающие его от всех известных вам людей.

1) Его метрика сложности задач (определяющая, какие задачи для него сложные, а какие простые) абсолютно не соответствует ни вашей, ни кого-либо из ваших сотрудников. Это, в частности, значит, что сложнейшее в вашем понимании задание он может выполнить на раз-два, а наипростейшее для вас задание он запросто может запороть.

2) Для него не существует ответа «я не знаю». Это значит, что даже при категорической нехватке исходных данных для решения задачи и полном отсутствии у него необходимых для решения таких задач знаний и умений, он не признается в этом и будет биться головой о стену сколь угодно долго в безуспешных попытка решить задачу, подсовывая вам все новые ошибочные решения.

3) Правильность решения им поставленной вами задачи в значительной степени зависит от того, как вы ему эту задачу сформулируете. И, что самое неприятное, заранее неизвестно, какая из ваших формулировок поспособствует правильному решению, а какая ошибочному. Получается, как повезет.

Что думаете? Стоит вам нанять на работу такого сверхспособного полимата с тремя «пунктиками»?
Я бы нанял.
• Но не для заполнения каких-либо вакансий или замены сотрудников
• А для выполнения особых ролей (каких – расскажу)

А теперь вот вам такая информация к размышлению.
Новая статья в Nature на сотнях убедительных примеров доказывает, что современные модели генеративного ИИ обладают тремя вышеописанными кардинальными инаковостями, принципиально отличающими их «разум» от нашего. Т.е. лучшие современные модели генеративного ИИ – и есть такие сверхспособные полиматы с 3 пунктиками.

Заинтересованный читатель моих лонгридов может прочесть по приведенным ссылкам:
[1, 2, 3]
• мой анализ значения трех названных кардинальных инаковостей «разума» LLM при их использовании на практике,
• мои размышления о том, как, даже при наличии общего языка (что в случае LLM кажется очевидным), истинное понимание нами LLM может оставаться недостижимым, и это делает наше сотрудничество в важных вопросах непредсказуемо рискованным (что иллюстрируется примером попыток взаимодействия людей и Океана в романе Станислава Лема «Солярис»).

#ИнойИнтеллект #LLMvsHomo

* * * * *
P.S. Примерно неделю канал будет на осенних каникулах. И вместо нового малоизвестного-интересного, рекомендую вам:
• освежить в памяти 3 важных предсказания годичной давности (дабы проверить их актуальность сегодня)
• а также подивиться, насколько близко к предсказанному «Эффектом Ленина-Трампа» шли события в США (и не только) с 2016 по сегодня.


1) Сбывшийся важный прогноз.
В посте «» приведен прогноз, {...продолжить в источнике}

_______
Источник | #theworldisnoteasy
@F_S_C_P

-------
Секретики!
-------
Порог имитации.
Сколько нужно картин Ван-Гога, чтобы имитировать его стиль?

Простой вопрос о способности генеративного ИИ (ГенИИ) неотличимо имитировать в дискуссии человека более не актуален (ибо уже нет сомнений, - может).
Трудный вопрос – это вопрос о способности ГенИИ сравниться в разумности с «человеком разумным» явно преждевременный (ибо сначала нужно убедиться, что ГенИИ, в принципе обладает каким-то, пусть и нечеловеческим, разумом).
• Новая работа HOW MANY VAN GOGHS DOES IT TAKE TO VAN GOGH? FINDING THE IMITATION THRESHOLD дает весьма интересный аргумент в пользу положительного ответа на трудный вопрос.
• И вместе с тем, помогает в поиске границ похожести/непохожести двух разных типов разума (людей и ГенИИ)

Авторы этой работы поставили интереснейший вопрос.
✔️ Художнику-человеку, для копирования стиля другого художника, может хватить всего несколько картин последнего. Напр. для копирования стиля Ваг-Гога хватило бы 5и картин «Звездная ночь», «Подсолнухи», «Автопортрет», «Пшеничное поле с кипарисами» и «Ирисы» (а в пределе, и одной из них).
А сколько картин нужно ГенИИ?
Есть ли «порог имитации» - т.е. минимально необходимого числа картин конкретного автора, чтобы скопировать его стиль?

Оказалось, что нижний порог имитации для ГенИИ много-много больше, чем для человека. И он равен примерно 200 (точно, он лежит в диапазоне 200-600, в зависимости от достигаемой степени похожести)

Из чего следует, что вопрос прав на интеллектуальную собственность на изображения решается запросто – простым ограничением (меньше 200) числа изображений конкретного автора. После чего модель просто не сможет воспроизводить стиль с высокой степенью похожести.

И, кстати, оказалось, что порог имитации также решает вопрос персональной собственности на изображения себя (для «звезд» и прочих публичных фигур). Порог имитации здесь тот же. И для невозможности воспроизведения чужих лиц достаточно лишь обеспечить порог имитации в обучающих данных модели.

Так что получается, что в такой изысканной способности разума, как копирование стиля изображений и лиц, разум людей и ГенИИ похожи. Только эффективность этой способности у людей раз в 200+ выше.

Подробней об «инаковости разумов» читайте у меня в постах и лонгридах с тэгом #ИнойИнтеллект

#ГенИИ #LLMvsHomo

_______
Источник | #theworldisnoteasy
@F_S_C_P

-------
Секретики!
-------
Не время быть идиотами, ИИ может победить людей.
В начале 21 века эволюция человека достигла своей максимальной точки. Естественный отбор, процесс, благодаря которому сильнейшие, умнейшие, быстрейшие размножались активнее чем другие ... теперь вывел на первый план иные качества ... процесс начал двигаться в обратную сторону, в сторону отупения. Учитывая уничтожение хищников, угрожающих исчезновению вида, поощряться стало максимально быстрое размножение, а разумные люди оказались перед угрозой исчезновения."
Это преамбула культового фильма-антиутопии «Идиократия» (кто не видел, смотрите).
Фильм – иллюстрация гипотезы о превращении земной цивилизации в мир кретинов, в результате неизбежной траектории H. sapiens к идиотизму – см. трейлер.

Через 6 лет после выхода фильма «гипотеза идиократии» получила подтверждение в работах известного американского биолога Дж. Крабтри. Разработанная им матмодель показала, что роль естественного отбора уменьшается, и это ведет к накоплению мутаций, ухудшению умственного и эмоционального развития.

Модель Крабтри – лишь эвристическая гипотеза. Ибо проверить ее адекватность невозможно из-за отсутствия возможности провести эксперимент.

Но как иначе тогда, черт побери, объяснять такие вещи? (см. рисунок)

Вверху слева: оценки p(doom) – вероятности того, что развитие ИИ приведет человечество к гибели, по мнению ведущих специалистов ИИ
Оценка Дарио Амадеи (СЕО Anthropic), недавно провозгласившего, что ИИ станет для человечества «машиной благодатной милости»: 10-25%
Вверху справа: Метафорическая иллюстрация того, что такая оценка Амадеи близка к вероятности «русской рулетки», в которую человечество играет, выпуская в люди новые версии после GPT-4.

Внизу справа: оценки аналитиков Ситигруп перспектив развития ИИ: AGI в 2029, ASI с 2031.
Внизу слева их же оценки того, какие скилсы вам нужно развивать, чтобы ни AGI ни ASI не лишили вас работы: коммуникации, критическое мышление, эмоциональный интеллект, эмпатию …


Как тут не вспомнить гипотезу Крабтри, что планета превращается в мир идиотов.
И всем рекомендую помнить, что проф. Деан (один из самых известных в мире нейробиологов) уже 2 года призывает человечество задуматься: «Не время быть идиотами, ИИ может победить людей».
#ИИ #AGI #LLMvsHomo

_______
Источник | #theworldisnoteasy
@F_S_C_P

Узнай судьбу картами Таро:
Anna Taro bot
Открытие тысячелетия - создана универсальная модель человеческого познания.
И уж поверьте, - это важнее, чем выборы Трампа.

Вычислительная модель «Кентавр» способна точно (!) предсказывать и моделировать любое (!) человеческое поведение в любом (!) эксперименте из любой (!) области, который можно описать на естественном языке.
Это открытие сделано выдающимся коллективом из 15-ти ведущих мировых научных центров. И оно окажет прорывное влияние на когнитивные науки, бросая вызов существующей парадигме разработки вычислительных моделей человеческого разума.

Кратко это открытие можно описать так:
• если революционный прорыв ChatGPT показал человечеству, что ИИ-модели могут быть неотличимы от людей в любых действиях, основанных на использовании человеческих языков, -
• то революционный прорыв «Кентавра» показывает человечеству, что ИИ-модели могут быть неотличимы от людей по своему поведению в любых ситуациях и обстоятельствах, связанных с исследованием, планированием и научением.

Иными словами, ИИ-модели могут не только оперировать на наших языках неотличимо от нас, но и при этом вести себя, как неотличимые от нас разумные сущности.


Авторы исследования создали модель «Кентавр» путем дообучения открытой языкового модели Llama 3.1 70B на новом крупномасштабном наборе данных под названием Psych-101. Psych-101 – набор данных беспрецедентного масштаба. Он охватывая данные по каждому психологическому испытанию от более чем 60,000 участников, которые сделали более 10,000,000 актов выбора в 160 экспериментах.
«Кентавр» не только точнее моделирует поведение новых участников по сравнению с существующими когнитивными моделями, но и обобщает свои знания на новые контексты, модификации задач и совершенно новые области.
Более того, авторы обнаружили, что внутренние представления модели становятся более согласованными с человеческой нейронной активностью после дообучения модели.

Это открытие имеет реальные шансы стать универсальной моделью познания. Следующим шагом должно стать преобразование этой универсальной вычислительной модели в единую теорию человеческого познания.

#LLMvsHomo #Познание

_______
Источник | #theworldisnoteasy
@F_S_C_P

Стань спонсором!