FSCP
17.1K subscribers
30.6K photos
3.58K videos
863 files
78.2K links
another filter bubble канал изначально созданный несколькими друзьями чтобы делиться копипастой, иногда оценочным суждением

технологии, деньги, социум

редакция @id9QGq_bot
реклама @johneditor
в будущее возьмут не всех
выводы самостоятельно

мир меняется
Download Telegram
РОБОТИЗАЦИЯ – КАКАЯ ОНА НА САМОМ ДЕЛЕ

Поразительно, насколько не совпадают подход и логика обсуждения темы роботизации в медиа и у профессиональных консультантов.

Как это делается в медиа, писать не нужно. Все и так знают: от маркетингового хайпа и зашкаливающего робо-оптимизма до алармизма типа «массовой безработицы» и «восстания роботов».

Как это выглядит на самом деле, - источников раз-два и обчелся. Например, отчет McKinsey «A FUTURE THAT WORKS: AUTOMATION, EMPLOYMENT, AND PRODUCTIVITY» (полная 140 стр версия и бриф 20 стр. есть здесь).

Самое важное, имхо, следующее.

1. Все, как обычно, упирается в деньги и рост производительности.

Деньги – это примерно половина от $16 трлн., выплачиваемых в виде зарплат, которые можно сэкономить, автоматизировав деятельность людей.

Рост производительности – это то, без чего не растет ВВП на душу населения (да и любой бизнес).

Этот рост возможен за счет (1) роста занятости и (2) роста автоматизации.

2. Проанализировав 2 тыс. типов трудовых активностей для 800 профессий, становится ясно, что только роботами и совсем без людей не обойтись почти нигде:

— полностью автоматизировать можно лишь < 5% профессий (которые почти все уже автоматизированы!);
— но в 60% профессий можно автоматизировать 30%+ активностей;
— самые автоматизируемые активности – это:
✔️ сбор данных - можно автоматизировать 64% активностей;
✔️ обработка данных - 69%;
✔️ регламентированные механические действия (типа сварка, пайка, резка, сортировка …) – 81%

N.B. 1) Каждая из трудовых активностей требует различных сочетаний 18 умений: от умения передвигаться и ориентироваться до креативности, умения планировать, оптимизировать и координировать других.
2) В разных странах и индустриях потенциалы автоматизации сильно разнятся
(см. инфографику)

3. Никакая массовая безработица не грозит. Наоборот – грозит дефицит людей. Без увеличения занятости (!), по крайней мере в ближайшие 50 лет, невозможно обеспечить планируемый рост ВВП на душу населения. Автоматизация может дать годовую прибавку в 0,8-1.4% ВВП в год. А нужно 2.8%!

При этом обязательно нужно в корне менять обучение и переобучение. Как это делать, пока никто не знает. Но это нужно придумать позарез. Ау, стартапы!

#Роботы #CценарииБудущего
Самодельный робот-собачка за $1K – предвестник революции роботов
Многие считают, что техно-революции происходят при скачкообразном росте возможностей продуктов новых технологий. Однако, на самом деле, это совсем не так.
Техно-революции происходят при скачкообразном снижении цен на такие продукты. Персоналки, лаптопы, айподы, айпады, айфоны и т.п., к моменту их превращения в массовый продукт, обладали возможностями (функционалом), придуманными и реализованными за годы до этого.
Но вот бах – цена на гаджет вдруг резко упала … И началась очередная техно-революция.

С роботами все произойдет ровно так же.
Как ни чаруют нас пируэты, выписываемые четвероногими роботами, типа SpotMini и RHex от Boston Dynamics, но никому даже не приходит в голову говорить о техно-революции, пока эти «песики» стоят как хорошее авто.
А за сколько бы вы купили себе механического четвероногого друга, способного выполнять широчайший набор функций – от антидепрессанта до поводыря?

Исследователи из Центра киберфизических систем, IISc, Бангалор, Индия, совершили прорыв, создав робота-собачку за $1K. Его зовут Stoch (на русском имя надо менять во избежание ассоциации «чтоб ты stoch»).
Помимо главного отличия – цены, в 30 раз ниже всех подобных роботов, этот песик размером с болонку:
- собирается, подобно мебели IKEA из набора стандартных деталей, часть из которых печатается на 3D принтере;
- способен бегать разными аллюрами (рысь, галоп, …) без всякого там Глубокого Обучения, и даже без датчиков обратной связи.

Т.е. ни тебе больших данных, ни высокой вычислительной производительности, ничего дорого и сложного. Всего-то 4 ноги с сегментами по 120 мм и суставами, гнущимися под 45 и 70 градусов со скоростью 461 градус в сек. Да по сервомоторчику 16W на каждую ногу. Да одна плата Raspberry Pi 3b, рассчитывающая с помощью системы нелинейных дифф-уравнений координаты, которые затем используются для генерации углов соединения посредством обратной кинематики. И всё!
А бегает и скачет собачка вполне приемлемо. И когда ей добавят несколько датчиков обратной связи будет хоть вальс танцевать, хоть на задних лапках служить.

И учтите, будучи запущенной в серию, даже с учетом украшения собачки пушистой шкурой с хвостом, цена собачки будет не дороже смартфона.
А значит революция роботов начинается.

• 2 минутное видео про Stoch (конструкция, принцип работы и живое бегание) https://www.youtube.com/watch?v=Wxx9pwwTIL4&feature=youtu.be
• Исчерпывающая авторская статья про Stoch https://arxiv.org/abs/1901.00697
#Роботы
🥇 Искусственный интеллект победил человека в гонке квадрокоптеров.

Швейцарские эксперты по робототехнике создали алгоритм, который управляет беспилотником более по-человечески, делая резкие и отрывистые маневры.

💬 По словам разработчиков, модель использует очень сложные вычисления, которые заранее выполняют на мощном компьютере — просчет нескольких минут полета может занять несколько часов. Однако исследователи работают над оптимизацией алгоритма для его работы в реальном времени.

#роботы
_______
Источник | #forklogAI
This media is not supported in your browser
VIEW IN TELEGRAM
🤖 Робопес за 60 минут научился ходить без тренировок в компьютерной симуляции.

Исследователи из Калифорнийского университета в Беркли задействовали метод обучения с подкреплением. Они разработали алгоритм Dreamer, использующий прошлый опыт для построения модели окружающего мира и прогнозирующий результаты потенциальных действий.

💬 По словам ученых, виртуальный обучающий симулятор никогда не будет таким точным, как реальность. Dreamer поможет роботам освоить новые навыки и приспособиться к неожиданным ситуациям.

#исследование #роботы
_______
Источник | #forklogAI
🚜 Роботизация сельского хозяйства. Борьба с сорняками

Solix - автономно и прицельно уничтожит сорняки

Роботы Solix - проект компании Solinftec (СП США и Бразилии) по выпуску автономных мобильных сельскохозяйственных роботов.

Энергоустановка робота основана на четырех солнечных панелях.

Робот перемещается по полю, сканируя растения. Система ИИ Alice анализирует фотографию и выдает заключение - это культура или сорняк. Сорняки робот точечно обрабатывает гербицидом.

Также Solix составит цифровую карту поля, где будут показаны точки обнаружения сорняков.

Производительность - до 40 га в сутки.

Робот ориентирован на работу с такими культурами, как пшеница, соя и кукуруза. Начало коммерциализации планируется в 2025 году.

Видео

#роботы #роботизация #мобильныероботы #земледелие #сорняки

👉 Каталог автономных сельскохозяйственных роботов для работы в поле, в саду или теплице
_______
Источник | #prorobots
🦿 Инженеры из Стэнфордского университета разработали экзоскелет для ног, оборудованный датчиками, одноплатным компьютером и алгоритмами искусственного интеллекта.

По словам исследователей, ИИ-модель персонализируется за один час. Она настраивает устройство и двигает лодыжкой, заменяя некоторые функции икроножной мышцы. Благодаря этому конечность отталкивается от земли и делает шаг, позволяя владельцу ходить быстрее с меньшими усилиями.

🏃 Ученые надеются, что разработка поможет пожилым или испытывающим трудности с мышцами людям передвигаться свободнее.

forklog.com

#исследование #роботы
_______
Источник | #forklogAI
🇺🇦 Украина получит 14 вооруженных беспилотных наземных транспортных средств THeMIS.

Соответствующий контракт подписали эстонский производитель робототехники и автономных систем Milrem Robotics и немецкая оборонная компания Krauss-Maffei Wegmann. Передача финансируется Министерством обороны Германии.

🤖 По данным Milrem Robotics, до конца 2022 года Украина получит семь беспилотников для эвакуации раненых. Остальные THeMIS сконфигурируют для расчистки маршрутов с полезной нагрузкой. Их поставка запланирована на второй квартал 2023 года.

#Украина #роботы
_______
Источник | #forklogAI
🤖 Специалисты из Google представили подход, позволяющий роботам эффективно протирать столы от крошек и жидкости в сложных средах.

Эксперты объединили методы обучения с подкреплением (RL) и оптимизации траекторий. Первый предоставляет роботу возможность выбирать действия по очистке поверхности, а второй определять команды для всего тела с учетом физических ограничений и предотвращения столкновений.

Исследователи использовали симулятор стохастического дифференциального уравнения задачи протирания стола для тренировки RL-политики планированию высокого уровня. По их словам, это позволяет избежать необходимости в обучающих данных для конкретной задачи.

🧽 Специалисты протестировал метод на роботе. Они заявили, что по сравнению с основанными на эвристике подходами он требует меньшего количества салфеток для очистки разливов и крошек с поверхности. Устройство не смахивает случайно мусор со стола и в процессе уборки не сталкивается с препятствиями вроде стульев.

#Google #роботы
_______
Источник | #forklogAI

by @F_S_C_P

Попробуй ⛵️MIDJOURNEY в Telegram
This media is not supported in your browser
VIEW IN TELEGRAM
🤖 Google обучила парк роботов сортировать мусор.

Исследователи тестировали технологию в течение двух лет. Они использовали метод глубокого обучения с подкреплением на основе реальных данных в комбинации с тренировками в симуляциях.

♻️ Для сбора датасета специалисты запрограммировали 30 роботов искать по офису мусоросортировочные станции и распределять объекты между баками определенным образом. Например, банки и бутылки требовалось отнести в контейнер для вторсырья, а бумажные стаканчики — к компосту.

Еще 20 роботов сортировали мусор в специально оборудованных «классах».

Всего исследователи провели около 572 500 тестов. По их словам, с увеличением объема данных производительность устройств повышалась.

👀 В результате система научилась правильно сортировать 84% объектов.

#Google #роботы
_______
Источник | #forklogAI

by @F_S_C_P

Попробуй ⛵️MIDJOURNEY в Telegram
Революция роботов намечена на март.
Такого техно-прорыва не было со времен Прометея.

Суть ожидаемого прорыва – разрешение парадокса Моравека, несокрушимой стеной преграждающего путь к человекоподобному Сильному-ИИ (AGI), а потом и к Супер-ИИ.
Логика здесь проста:
• Для достижения уровня AGI, интеллектуальный агент должен иметь тело (именно оно будет «жить», адаптируясь к внешней среде и взаимодействуя с ней и себе подобными)
• Однако, на пути к отелесниванию ИИ стоит парадокс Моравека, согласно которому. управление низкоуровневыми сенсомоторными операциями (операциями тела) требует огромных вычислительных ресурсов, - даже больших, чем управление высококогнитивными процессами (сложными мысленными операциями мозга).
• Т.е. без человекоподобного тела (робота - андроида) не будет AGI, а для «жизни» андроиду не хватает вычислительных ресурсов.

Что обещают в марте.
Бернт Борних - СЕО компании 1Х (на которую OpenAI сделал ставку в робототехнике андроидов), - объявил, что в марте, похоже, будет доказано, что ограничение парадокса Моравека было ложное, и оно возникало всего лишь из-за банальной нехватки данных [1].

Речь, скорее всего, идет о выпуске андроида NEO - «брата» Евы (андроид EVE). NEO будет превосходить «сестру» во многом и кроме того, будет передвигаться на ногах, а не на колесах.
Январская демонстрация Евы (демонстрация [2] и ее разбор [0]) была настолько поразительной, что редакция IEEE Spectrum даже провела свое расследование – не прятались ли под костюмами андроидов люди. Но все оказалось чисто – не подкопаешься [3].

Фишка андроидов компании 1Х в движке, разработанном OpenAI. Это нейронка, как и разум человека, работает, учась на данных, поступающих от зрения, и генерирующая действия (управление движением, руками, захватами, туловищем и головой) с частотой 10 Гц.
«Базовая модель» понимает широкий спектр физического поведения: от уборки дома до сбора предметов на складе и социального взаимодействия с людьми и другими роботами. Но самое главное в том, что новые навыки появляются у андроида всего за несколько минут сбора данных и обучения, - путем наблюдения за тем, как это делают люди.

Для скептиков, сомневающихся в грядущем опровержении парадокса Моравека (даже если за этим видны уши OpenAI), рекомендую объявление, сделанное позавчера Тэдом Сяо (главным спецом по робототехнике (Senior Research Scientist) в Google DeepMind Robotics).
Тэд написал так [4]:
«В ближайшие недели выйдет 3-4 крупных новости, которые потрясут сферу робототехники и искусственного интеллекта.
Скорректируйте свои планы, 2024 год будет сумасшедшим.»


О том же пишет и Джеймс Дарпиниан в лучшем на сегодня обзоре ТОР 20-тки андроидов мира [5]:
Святой Грааль - ходячий, говорящий и полезный андроид из научной фантастики, -внезапно оказывается в пределах досягаемости.

Так что, ждем революцию роботов в марте.

#Роботы
0 www.youtube.com
1 twitter.com
2 www.youtube.com
3 spectrum.ieee.org
4 twitter.com
5 james.darpinian.com
_______
Источник | #theworldisnoteasy
@F_S_C_P
Генерируй картинки с ⛵️MIDJOURNEY в Telegram
Очень скоро война превратится в 5=ю казнь апокалипсиса.
Против умной «саранчи в железных нагрудниках» все бессильно.

«И грудь у неё была, словно железная броня, а шум её крыльев был подобен грохоту множества колесниц, влекомых скакунами, рвущимися в бой.» Откровение 9:7—9)

По Библии, пятой казнью апокалипсиса будет «саранча в железных нагрудниках», против которой никто и ничто не устоит.

В технологическом переложении 20-го века непобедимость роя «железной саранчи» прекрасно описал Станислав Лем в романе «Непобедимый». Там даже самый мощный робот космического корабля со знаковым именем «Непобедимый», вооружённый системой силовых полей и сферическим излучателем антиматерии, оказался бессилен перед миллиардным роем крохотных летающих роботов.

В современном переложении об этом пишут Эллиот Акерман и адмирал Джеймс Ставридис:
• в формате эссе «Рои беспилотников изменят баланс военной мощи» [1]
• в формате романа «2054», в котором они размышляют о многих аспектах и роли ИИ в будущих военных конфликтах [2].

Ключевая идея этих авторов проста и безотбойна – сочетание роя дронов с ИИ кардинально меняет ход боя.

«По своей сути ИИ — это технология, основанная на распознавании образов. В военной теории взаимодействие между распознаванием образов и принятием решений известно как цикл НОРД — наблюдать, ориентироваться, решать, действовать. Теория петли (цикла) НОРД, разработанная в 1950-х годах летчиком-истребителем ВВС Джоном Бойдом, утверждает, что сторона в конфликте, которая сможет быстрее пройти через петлю НОРД, будет обладать решающим преимуществом на поле боя».

Для максимально быстрого прохождения петли НОРД нужно автономное и адаптивное оружие.
• Промышленные роботы являются примером автономных, но неадаптивных машин: они неоднократно выполняют одну и ту же последовательность действий.
• И наоборот, беспилотные дроны являются примером адаптивных, но неавтономных машин: они демонстрируют адаптивные возможности своих удаленных людей-операторов.

Рой дронов столь же адаптивен, но неавтономен, как и единственный дрон. Но для дрона-одиночки эта проблема решается его связкой с оператором (или примитивизацией функций). А для роя дронов такого числа операторов не напасешься (и функции упрощать не хочется). Но невозможно запустить тысячи автономных дронов, пилотируемых отдельными людьми. А вычислительные возможности ИИ делают такие рои возможными.

Если роем будет управлять ИИ, проблема адаптивности и автономности роя более не существует. Связка роя и ИИ станет самым быстрым исполнителем прохождения петли НОРД.

Акерман и Ставридис пишут:
«Это изменит ведение войны. Гонка будет вестись не за лучшие платформы, а за лучший ИИ, управляющий этими платформами. Это война циклов НОРД, рой против роя. Победит та сторона, которая разработает систему принятия решений на основе ИИ, способную опередить противника. Война движется к конфликту "мозг против мозга"»

И оба мозга будут электронные, - добавлю я от себя.

P.S. В одном Аккерман и Ставридис, имхо, ошибаются:
• Рои дронов с ИИ – это лишь ближняя перспектива (т.н. ПЖРы – полуживые роботы [3])
• В 2054, про который пишется в романе, ПЖР уже уступят место еще более интеллектуально продвинутому «жидкому мозгу» [4]

#БПЛА #Война #ИИ #Роботы
1 www.wsj.com
2 www.penguinrandomhouse.com
3 https://t.iss.one/theworldisnoteasy/454
4 https://t.iss.one/theworldisnoteasy/654
_______
Источник | #theworldisnoteasy
@F_S_C_P
-------
поддержи канал
-------
DeepMind подготовил эволюционный скачок в миропонимании роботов.
Найден простой и эффективный способ обучения
роботов, как людей.
Представьте, что к вам впервые пришел сотрудник сервиса по генеральной уборке офисов. Вы водите его по всем помещениям, показываете, что и где нужно сделать и чего делать нельзя: тут вымыть, там пропылесосить, шторы в конференц зале постирать, санузлы дезинфицировать, весь мусор собрать, но на столах ничего не трогать, прочистить бытовую технику от кофемашин до кондиционеров и т.д. и т.п.
Т.е. вы просто все показываете и рассказываете. А работник, если что-то не понятно, переспрашивает и уточняет. Причем, работник толковый. И если ему, например, специально не показывали на флипчарты в переговорных, а просто в конце тура по офису добавили – оторви все исписанные листы на флипчартах и, не путая их порядок, сложи на стол перед дверью в архив, - сотрудник сам найдет все флипчарты и сделает ровно так, как ему сказано.

Примерно так же, но даже без реального тура по офису, а просто засняв его на смартфон со своими комментариями, мы очень скоро будем учить роботов.

Информация к размышлению.
Эволюционное развитие у млекопитающих способностей осмысления окружающей среды и целенаправленной навигации передвижений заняло более 200 млн лет.
На много порядков меньшее время (всего какие-то несколько сотен тысяч лет) потребовалось для следующего «эволюционного скачка» в развитии самого когнитивно одаренного млекопитающего – людей. На освоение ими языков абстрактных понятий эволюции (уже не генной, а генно-культурной) потребовалось всего лишь несколько сотен тысяч лет.
У формирующегося на Земле нового небиологического (цифрового) вида эти процессы:
1. во-первых, идут с несопоставимо огромной скоростью;
2. а во-вторых, имеют обратную последовательность.
Последнее оказалось возможным из-за нематериальности и бестелесности «цифровых сущностей» генеративного ИИ на основе больших языковых моделей.
Сначала, они всего за пару лет эволюционировали до уровня людей в оперировании языками абстрактных понятий. А теперь, вселясь в тела роботов, они, скорее всего, за какие-то месяцы сделают второй «эволюционный скачок» – став «материализованными цифровыми сущностями».
Вместе с обретением тел они обретут способности осмысления окружающей среды и навигации своих передвижений в соответствии с намерениями и целями.
Представленная Google DeepMind система обучения роботов объединяет подсистему «мультимодальной навигации по инструкциям с демонстрационными турами (MINT)» и подсистему «интеграции зрения, языка и действий» Vision-Language-Action (VLA). Это объединение позволило интегрировать понимание окружающей среды и силу рассуждений на основе здравого смысла больших языковых моделей с огромным контекстным окном в 1.5 млн токенов.

Проще говоря, гении из DeepMind разработали способ, с помощью которого роботы понимают и ориентируются в сложных средах, используя комбинацию слов, изображений и видеотуров. При этом роботы могут получать от людей команды на выполнение действий в сложных средах мультимодально: устно, письменно, в виде картинок (карты, планы, схемы, идеограммы и т.д.), а также на основе жестов людей (типа объяснений на пальцах) и (в следующей версии) их мимики.

На представленных Google демо их система Mobility VLA на основе Gemini 1.5 Pro интеллектуально обходит GPT-4o и GPT-4V.
Напр. на обращение к роботу «Хочу еще вот этого» с показом пальцем на пустую банку колы, робот с Mobility VLA сам нашел холодильник, где этого добра было много. С чем прочие модели справились плохо (одни не поняли, что надо, другие – где это взять).

Картинка: архитектура Mobility VLA и сравнение с другими моделями telegra.ph
Статья arxiv.org
Видео демо x.com
#роботы
_______
Источник | #theworldisnoteasy
@F_S_C_P

Генерируй картинки с ⛵️MIDJOURNEY в Telegram