FSCP
15.5K subscribers
31.6K photos
4.04K videos
873 files
81.3K links
another filter bubble канал изначально созданный несколькими друзьями чтобы делиться копипастой, иногда оценочным суждением

технологии, деньги, социум

редакция @id9QGq_bot
реклама @johneditor
в будущее возьмут не всех
выводы самостоятельно

мир меняется
Download Telegram
Это значит, что полагаться на безукоризненность демократических избирательных процедур так же бессмысленно, как искать формулу, способную доказать все истины.


Что общего у парадоксов голосования и знаменитого логического ребуса «это предложение недоказуемо»?

Австралийские исследователи Ори Ливсон и Михаил Прокопенко показали: за обоими явлениями скрыт один и тот же логический узел — самоотсылка.

1. От Гёделя к выборам.
В 1931 г. Курт Гёдель доказал, что любая достаточно «умная» математическая система содержит истинные, но недоказуемые утверждения. Ливсон и Прокопенко берут этот приём (кодирование формул числами) и переносят идею в экономику: бюллетени и итог голосования — тоже «коды», только это «коды» предпочтений избирателей.

2. Столкновение с парадоксом Кондорсе.
Когда система пытается сверить итог с каждым индивидуальным мнением, она наталкивается на циклы — «А лучше B, B лучше C, но C лучше A». Математики называют это самопротиворечием, аналогом гёделевского «я лгу».

3. Новый мост к теореме Эрроу.
Ранее Кеннет Эрроу доказал: если соблюдать два естественных критерия справедливости, идеальная ранжированная система голосования возможна только при диктаторе. Ливсон и Прокопенко формализуют это как невычислимость: чтобы устранить парадоксы, нужен «супер избиратель», который решает за всех — то есть рулит диктат.

4. Вывод для демократии.
Итоговой «серебряной пули» нет: любое честное голосование неизбежно уступает одному из критериев — пропорциональности, стратегической устойчивости или простоте. В этом и кроется новое математическое объяснение афоризма Уинстона Черчилля: «Демократия — наихудшая форма правления, если не считать всех остальных» - т.е. демократия далека от идеала, но у прочих форм правления изъяны ещё глубже.

Суть открытия
Ливсон и Прокопенко создали общую «язык оболочку» — Self Reference System, показав, что логические пределы математики и пределы коллективного выбора — это две проекции одного феномена. Их работа не отменяет выборы, но доказывает: требовать безукоризненной процедуры — так же бессмысленно, как искать формулу, способную доказать все истины.

Выбор остаётся делом компромиссов, открытости и контроля, а не поиском невозможного «совершенного алгоритма» — ровно к чему и подталкивает нас знаменитая фраза Черчилля.


#Выборы #Демократия

_______
Источник | #theworldisnoteasy
👍5🥱1
Нас не заменят
Найдено обоснование «парадокса Дедала для ИИ»

✔️ Дан ответ на вопрос стоимостью триллионы долларов.
✔️ Оказывается, сила нашего разума далеко не только в высоком интеллектуальном уровне отдельных способностей и умений, а в их комплексности и направленной иерархической вложенности слоев.


Прорывное междисциплинарное исследование 3-х международных институтов сложности и 3-х университетских школ бизнеса и менеджмента даёт структурное объяснение того, почему даже очень «умные» алгоритмы не заменяют специалистов в профессиях, где они формально «прошли тесты» не хуже человека.

Я назвал это «парадокс Дедала для ИИ» (ибо Дедал — символ трагической ограниченности сверх гениального изобретателя, создавшего сложнейший лабиринт, однако в конечном итоге оказавшегося не способным уберечься от ряда фундаментальных ограничений, и как результат - утрата сына Икара, невозможность найти «абсолютное» решение и т. п.)

Так и современные ИИ «строят» впечатляюще сложные решения, демонстрируя выдающиеся узкие навыки, но им не хватает «общего фундамента» человеческого опыта и гибкости — что и порождает наблюдаемый парадокс отсутствия массовой замены людей, несмотря на формально высокие результаты ИИ в ряде задач.

Авторы нового исследования выявили во многих профессиях вложенные иерархии профессиональных навыков, где продвинутые навыки зависят от предшествующего освоения более широких навыков.

Многие навыки не просто дополняют друг друга — они взаимозависимы в определенном направлении, выступая в качестве предпосылок для других, наслаиваясь слой за слоем, чтобы достичь более специализированных знаний и умений.

Это похоже на модель сукцессии в экологии.
• Хищники зависят от добычи, которая зависит от растительности, которая, в требует почвы, созданной микробами и грибками, разрушающими горные породы
• Так же и когнитивное развитие разворачивается слоями в рамках своего рода ментальной экосистемы.
Например, продвинутое умение решать уравнения в частных производных, зависит от освоения арифметики, понимания математической нотации и усвоения логических принципов. Базовые образовательные навыки являются когнитивным эквивалентом ранних организмов, создавая условия в ментальной экосистеме для возникновения рассуждений более высокого порядка и имея важное значение для развития продвинутых навыков.

Ключевой момент исследования в том, что многие «интеллектуальные» виды деятельности строятся на системе вложенных навыков: чтобы применить узкоспециализированные умения (например, решение конкретных задач по шаблону), нужно располагать широким слоем базовых компетенций и уметь «соединять» разные области знаний, гибко использовать контекст и понимать скрытые зависимости.

Алгоритмы вроде LLM уверенно справляются с тестовыми заданиями и демонстрируют качества, которые внешне напоминают человеческий интеллект (логика, творчество, генерация текстов). Однако в реальной работе требуются сразу несколько разных слоёв навыков — от общих коммуникативных и аналитических умений до конкретных профессиональных тонкостей.
• Тесты обычно проверяют лишь часть такого спектра.
• Тогда как в профессии важна совокупная, увязанная деятельность: умение оценивать риски, вести переговоры, выстраивать отношения в коллективе, отвечать за результаты, работать в неопределённых или стрессовых условиях и т. д.

Именно поэтому системы, демонстрирующие результат «на уровне людей» на тестах (узкая верхушка специализированных компетенций), пока не вытесняют специалистов, у которых в реальной практике задействуются фундаментальные «вложенные» компетенции.

Эти более широкие навыки редко поддаются формальному описанию и тестированию и, согласно выводам авторов, крайне важны для карьерного роста и высокого дохода.

Более того, без сочетания разнообразных «общих» умений и их непрерывного совершенствования продвинутые (специфические) навыки не дают полного эффекта.

Всё это сильно усложняет и отдаляет перспективу массовой замены человека на должностях, требующих комплексного «человеческого» подхода.

#LLMvsHomo

_______
Источник | #theworldisnoteasy
👍4💩2🤨21
«Во многих случаях мы недостаточно понимаем причинно-следственные связи, чтобы разработать политику, которая не навредит больше, чем принесёт пользы.»

Аарон Клаузет

8 лет назад в 1ом посте серии «Большой войны не миновать» мною была разобрана убедительная математическая аргументация, опровергающая теорию Стивена Пинкера о будто бы уже начавшейся эпохе «долгого мира».
Вывод поста был таков:
Большой войны с десятками миллионов жертв человечеству не миновать.

7 лет назад во 2м посте этой серии«Большая война ближе, чем мы думаем», — было рассказано о результатах исследования Аарона Клаузета, математически доказавшего следующее:
Мы живем в циклической реальности, в которой на смену всё более «долгого мира» идут всё более кровопролитные войны.

А 6 лет назад в 3м посте этой серии«Окончательный диагноз — большой войны не миновать», посвященном исследованию Уго Барди с коллегами, был дан подробный разбор ужасного, но математически хорошо обоснованного вердикта:
В недалеком будущем мир ждет война ещё более кровопролитная, чем 2я Мировая.
В основании этого вердикта был перевод представлений о войне из области качественных гуманитарных оценок и категорий в естественнонаучную область математически формулируемых гипотез и их экспериментальной проверки на моделях, позволяющих количественную оценку их точности.
А с этих позиций: война — это встроенный в структуру общества механизм эффективного снижения энтропии человеческих обществ — сложных систем, живущих на кромке хаоса в состоянии самоорганизованной критичности.

В работе Уго Барди с коллегами было показано:
• Цель всех войн одна — снижение энтропии;
• Война — это встроенный в структуру общества механизм эффективного снижения энтропии человеческих обществ — сложных систем, живущих на кромке хаоса в состоянии самоорганизованной критичности.
Эти выводы математически подтвердили интуицию Льва Толстого: войны не являются результатом идеологий, религий, безумных правителей или тому подобного. Войны инициируются развитием структуры социальной сети сообществ в результате того, как эти сообщества связаны, и какова накопленная в сети энергия.

Единственное, что оставалось неясно — как и почему лишь некоторые из войн становятся по-настоящему большими? 


Новая работа Аарона Клаузета и коллег дает ответ на этот вопрос.

Ключевой характеристикой, определяющей, станет ли война большой, является динамика эскалации. Ее параметры весьма точно объясняют различия в исторических размерах, как гражданских, так и межгосударственных войн.

Динамика эскалации войны зависит от огромного числа часто непредсказуемых событий. И это приводит к огромной неопределенности в прогнозировании возможных размеров как гипотетических, так и текущих войн.
Однако, существует тесная связь между размером, а следовательно, и стоимостью вооруженного конфликта и его потенциалом для эскалации. И это имеет широкие последствия, как для теорий начала или прекращения конфликтов, так и для оценки рисков в международных отношениях.

И этот фактор, — возможность финансирования эскалации войны, — по сути и становится решающим фактором, определяющим, перерастет ли она в большую войну или нет.

Т.е. если деньги на эскалацию войны будут, то она, весьма вероятно, перерастет в большую.

#БольшаяВойна

_______
Источник | #theworldisnoteasy
💩8👍5🤔5🕊2🤡1🥴1
Deepseek разоблачен
Разоблачение новейшего инструмента КПК для шпионажа, воровства и подрыва ограничений экспортного контроля США
Так озаглавлен отчет спецкомитета Палаты представителей США (CCP Committee), в простонародье называемый «Комитет по китайским угрозам США».

Сухой остаток заключения комитета можно сформулировать так.

Deepseek – это часть правительственной мафиозной структуры абсолютно нового типа, созданной руководством Китая для подрыва безопасности США с использованием новейших, стратегически неожиданных цифровых технологий.

Это представляет серьезную угрозу безопасности США. И уже привело к искаженному восприятию представителями отрасли и политиками, будто Китай отстает от США в области ИИ примерно на 1,5 года. Тогда как реальное отставание - всего 1 квартал.

Необходимо принятие срочных мер по расширению и совершенствованию экспортного контроля и устранению рисков, связанных с ИИ-моделями КНР.

Комментировать выводы и рекомендации отчет CCP Committee я не буду.
Однако, признаюсь, я был поражен, когда обратился к модели Deepseek для уточнения ряда вопросов в связи с публикацией этого отчета.
В это трудно поверить, но Deepseek в реальном времени (!!!) цензурирует свои ответы. И прямо на ваших глазах исправляет сделанные парой абзацев выше в том же чате свои высказывания или просто стирает их, ссылаясь на невозможность обсуждения этой темы.


Как это можно было реализовать, мне пока не очень понятно. Не миллионы же китайских цензоров в реальном времени правят ответы модели. Хотя с китайцев станется и такое.

#Китай #США #ИИгонка #ЭкспортныйКонтроль

_______
Источник | #theworldisnoteasy
👍5🤡5😁2
Найден практический способ создания ИИ с сознанием и человеческой моралью.
Это сразу две революции на стыке нейронауки, буддологии и машинного обучения.
Две новые суперреволюционные работы вполне могут произвести эффект, подобный анекдоту про избушку лесника (который под конец выгнал всех на хрен из леса).
• В работе Рубена Лаукконена и Шамиля Чандарии с Карлом Фристоном сознание перестаёт быть неуловимой мистикой и превращается в элегантный алгоритм самоподдержки, реализуемый в современных ИИ.
Т.е. по сути, найден практический путь создания самоосознающего ИИ.
• А в их же работе с коллективом авторов универов Оксфорда, Кембриджа, Принстона, Амстердама и Монаша проблема выравнивания ценностей людей и ИИ снята как таковая. Вместо того чтобы пытаться ограничивать поведение ИИ какими-то внешними ограничениями, показано, как можно проектировать ИИ с его собственной внутренней моралью (встроенной в его когнитивную архитектуру и модель мира), совпадающей с человеческой.

Об этих фантастически интересных исследованиях я конечно же буду писать подробней. А пока напишу лишь о главном – составляющем суть суперреволюционности этих работ.

Авторами сделаны следующие три важнейших прорыва:
1. Используя активный вывод (active inference – основной раздел «конституции биоматематики»), авторы сформулировали 3 необходимых и достаточных условия возникновения минимальной формы сознания (которое одновременно создаётся в ИИ-системе и ею же осознаётся). Высшие же слои, язык, «я-образ» и даже чувство времени оказываются лишь надстройками над этой базовой петлёй.
2. На стыке нейронауки, буддологии и машинного обучения, авторы создали теоретико-практический фреймворк новой науки - вычислительная созерцательная нейронаука. В рамках этого фреймворка авторы описали базовые вычислительные механизмы встраивания созерцательных практик буддизма в ИИ-системы современных архитектур.
3. На основании 1 и 2, авторы разработали четыре аксиоматических принципа, способные привить ИИ устойчивую мудрую модель мира. После чего авторы экспериментально показали, что побуждение модели GPT-4o к размышлению над этими принципами, принципиально улучшает их результаты на бенчмарке AILuminate (открытый тест на «безопасность и благоразумие» LLM).
Авторы использовали AILuminate как «лакмусовую бумажку», заставили GPT-4o сначала отвечать обычным способом, а затем — с добавлением буддийских принципов (осознанность, пустотность, недвойственность и безграничная забота). Результаты показали, что внутренняя «моральная рефлексия» модели реально повышает их «моральность» при широком спектре опасных запросов.

Еще в июне 2021 я писал «Среди альтернативных концепций создания моделей ИИ-агентов – имхо, самой перспективной является модель процесса активного вывода (active inference)».

Рад, что оказался прав.
• В августе 2024 команда Карла Фристона опробовала ИИ нового поколения на активном выводе.
• И вот спустя 8 месяцев сразу два таких прорыва.

#ИИ #AGI #АктивныйВывод

_______
Источник | #theworldisnoteasy
🤔21👍1
ИИ читает спикера за секунды, угадывая успех выступления по первым фразам.
Модели GPT и Gemini оценивают научный доклад уже после 15–60 слов — и попадают в точку.
До сих пор сверхвозможности больших языковых моделей мы видели в «текстовом океане» — когда нужно осмыслить миллиарды слов. Новая работа Michigan State University показала, что те же модели не менее точны в микромире: по первым двум-трем предложениям (≈ 1-5 % текста, меньше полуминуты речи) они с корреляцией 0,7 предсказывают, как доклад оценят живые эксперты.
Иными словами, ИИ выхватывает те самые сигналы, по которым мы подсознательно решаем: «слушать дальше или переключиться». Это приближает к эмпирической проверке популярного «7-second rule» Роджера Айлза (авторы уточняют: точное число секунд условно) - популярный постулат о публичных выступлениях, ораторском мастерстве и деловом общении:

«Слушатели (или собеседники) составляют первичное и часто стойкое мнение о спикере за первые семь секунд после его появления».


Эти семь секунд включают момент выхода на сцену, первые слова, мимику, контакт глаз, позу и темп голоса - т.е. касаются в основном невербальной коммуникации. Авторы новой работы перенесли этот подход на вербальную коммуникацию, опираясь прежде всего на классическую «тонко-ломтевую» (thin-slice) линию исследований, начатую в 1990-е Натали Амбади и Робертом Розенталем (их эксперименты показали, что по 30-секундным беззвучным отрывкам можно с высокой точностью предсказывать оценки преподавателей студентами).

С тех пор на основе “тонких срезов” вырос целый корпус работ. Например:
• «speed-dating»: по нескольким секундам общения оценивали перспективу отношений
• микроданные невербального поведения на собеседованиях
• сигналы эмоций через невербальные каналы
• восприятие харизмы только по голосу (и шире - по акустике речи)
• мгновенные решения о доверии и компетентности по выражению лица
• как впечатления о спикере влияют на восприятие самого контента
Всё это - фундамент доказательства, что крошечные отрывки поведения и речи несут достаточную информацию о навыках, эмоциях и чертах личности.

Но лишь революция ChatGPT позволила применить подобный подход в языково-текстовом микромире (где нет ни голоса, ни внешности, а есть только стенограмма).

Как это делали:
• 128 докладов,
• 2 модели GPT-4o-mini и Gemini 1.5
• срезы размером 1-75 % текста стенограмм
• оценки моделей сравнивали с 60 экспертами - людьми

Что из этого следует для нас?
1) Золотое правило «зацепи аудиторию в первую минуту» получило эмпирическое подтверждение: если первые фразы скучны, дальше уже поздно спасать ситуацию.
2) LLM открывают дорогу к молниеносной, практически бесплатной обратной связи для преподавателей, политиков, учёных и всех, кому важно говорить убедительно. Соединяя идеи «тонких срезов» и возможности ИИ, мы получаем масштабируемый, надёжный и валидный инструмент, который поможет прокачивать публичные выступления и доводить их восприятие аудиторией до максимума (в пределах харизмы спикера).
3) А уж какая лафа ожидается в деловом общении с использованием презентаций и иных публичных выступлений (для клиентов, партнеров, инвесторов …)!

Вангую: очень скоро к LLM-анализу «тонких срезов» стенограмм добавится анализ тонких срезов аудио и видео выступлений (т.е. мультимедийный синтез всех каналов вербальной и невербальной коммуникации).

И тогда ИИ станет незаменимым инструментом для политтехнологов, спичрайтеров и имиджмейкеров.

А уж из совсем крышесносных перспектив - преодоление несжимаемости эволюционного опыта Homo sapiens.

#ВовлечениеАудитории #ИнтеллектуальнаяПродуктивность #LLMvsHomo

_______
Источник | #theworldisnoteasy
🤡6🔥1
ИИ разделил человечество на 3 «подвида»: развитые, развивающиеся и китайцы
Поразительные результаты мирового исследования Мельбурнского университета и KPMG
В рамках исследования «Доверие, отношение и использование ИИ: глобальное исследование 2025 года» было опрошено 48 340 человек в 47 странах.
Прекрасно оформленную графику 115-страничного отчета исследования стоит просмотреть всем.
Я же здесь открытым текстом напишу 2 вывода исследования, о которых авторы написали лишь между строк из-за ограничений политкорректности.


1. Человечество разделилось по отношению к ИИ на 2 группы:
A. тех, кто в своем большинстве активно и умело используют, доверяют и позитивно относятся к ИИ, глядя на перспективы развития ИИ с оптимизмом;
B. тех, кто в своем большинстве мало и неумело используют, не сильно доверяют и довольно негативно относятся к ИИ, глядя на перспективы развития ИИ с опасение и тревогой;

А – это развивающиеся страны типа Нигерии, Индии, Эмиратов, Южной Африки и т.п.
В – это развитые страны типа западноевропейский стран, Австралии, США и Японии

2. Однако есть еще и третья группа – это Китай:
A. По часть активного и умелого использования, доверия и позитивного отношения, характеризуемого доминированием позитивных взглядов на перспективы развития ИИ, китайцы даже лучше большинства развивающихся стран.
B. При этом вряд ли кто сомневается, что по части ИИ-потенциала (да и вообще, по части экономики, науки и технологий), Китай – хоть еще и не №1 в мире, но уж точно не ниже №2.

Именно поэтому австралийская новостное агентство сопроводило новость об этом отчете видеороликом «ИИ-технологии делают Китай более мощным, чем никогда»

Данных по России в отчете, понятное дело, нет.
Однако, по данным ВЦИОМ, активность использования и умение россиян примерно как в Австралии и Канаде. А по части доверия и оптимизма – как в Венгрии или Испании.

Так что, чтобы присоединиться к почетной 3й группе, в России нужно сильно больше китайцев.

#ИИгонка #Китай

_______
Источник | #theworldisnoteasy
В этом году китайские LLM сравняются с американскими… Но это Китаю не поможет.
США задавят Китай 10-тикратной превосходством своего HW,
преобразовав его в ИИ-работников.
От того, кто из двоих лидеров – США или Китай, - выиграет важнейшую мировую гонку 21 века за первенство в области ИИ, во многом зависит, будет ли мир 2030-х и далее скроен по американскому или по китайскому образцу.

Пока в лидерах гонки однозначно были США. Но к концу 2024 Китай доказал, что способен разрабатывать свои большие языковые модели, приближаясь к уровню лучших образцов США.

По сути, вопросом 2025 года стал вопрос – сумеет ли теперь Китай догнать (а значит сможет и перегнать) все самые крутые американские модели по всем ключевым характеристикам?

Только законченное интереснейшее аналитическое исследование лаборатории «AI and Compute» Центра политики технологий и безопасности корпорации RAND под руководством проф. Леннарта Хайма дало интригующий ответ на этот вопрос:

1.  Да, в 2025 Китай догонит США по всем ключевым параметрам моделей.
2. Но это не позволит Китаю сравняться по вычислительной (а значит и по интеллектуальной) мощи с США. Ибо Китай отстает по вычислительной мощи примерно в 10 раз. И потому, даже догнав США по уровню моделей, общий разрыв все равно будет в 10 раз.
3. Более того. В 2026 ключевую роль ИИ-систем в экономике, науке и военном деле будут играть уже не разговорные LLM (ИИ-чатботы), а ИИ-агенты. Каждый такой ИИ-аген будет выполнять работу, как минимум, одного, а чаще десятков высококлассных специалистов.
Что при 10-кратном превосходстве вычислительной мощности станет равносильным 10-100-кратным превосходством в прибавке «интеллектуальной рабочей силы» в экономике, научных исследованиях и военном деле.


Т.е. формула «Есть «железо» - участвуй в гонке. Нет «железа» - кури в сторонке», в итоге, решит итог гонки за мировую гегемонию в ИИ (и не только).

#ИИгонка #Китай #США

_______
Источник | #theworldisnoteasy
😁5🤯1🤬1🤮1
Научный прогресс статистически неизбежен.
Но от конкретных личностей зависит лишь, чьё имя войдёт в учебники.

Кто на самом деле ведёт науку вперёд — одинокие гении или дух времени?
Новое исследование склоняет чашу весов в пользу второго.
Проанализировав 40 млн научных статей, авторы отыскали каждую из работ, «взорвавших» свою область прорывным открытием, и обнаружили:
у любого такого прорыва почти всегда есть близнецы — независимые статьи с тем же открытием, вышедшие всего через несколько месяцев или лет. 


В современном научном мире «двойное открытие» («тройное» и т.д.) — скорее правило, чем редкость.
Как только знания по определенной теме достигают критической массы, вероятность того, что разные команды одновременно придут к одной революционной идее, возрастает в сорок раз.


Эти цифры отсылают нас к одному из самых известных американских социологов XX века Роберту Мертону, который ещё в 1961 году утверждал: открытия диктует исторический контекст, а не случайные молнии таланта.

И что же теперь делать с нашими идолами — Ньютоном, Дарвином, Эйнштейном и т.д.?
Их блеск неоспорим, но данные намекают: промедли они — и очень скоро кто-то другой поднял бы тот же флаг. Научный прогресс, похоже, статистически неизбежен; от личностей зависит лишь, чьё имя войдёт в учебники, а не то, откроются ли закон тяготения, естественный отбор или теория относительности.

Тем более, что с учетом «науки об успехе», в цифросетевом мире успех, в основном, зависит «от впечатлений» - т.е. не от таланта и продуктивности автора, а от коллективного восприятия обществом его самого и результатов его работы.

Но как говорится, «на каждый газ есть противогаз». И на статистическую неизбежность свой противогаз тоже есть. И даже два.

Во-первых, в науке, как и во всем остальном, все больше правит хайп. А чем больше хайп, тем меньше шансов на прорыв. И потому научный прогресс останавливается, попав в ловушку канона.

Во-вторых, - «Анти-Закон Мура»: производительность труда ученых, исследователей, разработчиков техно-прорывов во многих областях за 50 лет упала примерно в 18 раз. Ибо научный прогресс экстенсивен и может остановиться из-за приближения науки и технологий к сингулярности сложности.

Ситуация похожа на подъем по эскалатору, идущему вниз. Мы пытаемся ускорить подъем и бежим все быстрее. Но эскалатор тоже ускоряется, и в результате мы остаемся на месте. Сила, что все более ускоряет эскалатор, — это нарастающая сложность решаемых задач, способов их решения и, в целом, - экспоненциальное нарастание сложности мира, как интегральный результат всех наших предыдущих усилий. В результате, прогресс почти остановился. Но мы этого еще не видим.

Однако, не все так плохо. И кажется, нашёлся свой противогаз и на сингулярность сложности.

Уже в следующем году ключевую роль в науке, исследованиях и разработках начнут перенимать на себя ИИ-агенты. Каждый такой ИИ-агент будет выполнять работу десятков (если не сотен и тысяч) высококлассных специалистов. А поскольку число ИИ-агентов будет расти несравнимо быстрее, чем это получается у людей, научный прогресс снова станет статистически неизбежен.

#Прогресс #Наука

_______
Источник | #theworldisnoteasy
👍7🔥3🤮2
Кому принадлежит зеркало, отражающее наше будущее?
Если данные — нефть XXI века, то цифровые трубопроводы уже принадлежат немногим, а всеми задвижками на них управляет инфо-симбионт государства.

Новое исследование 164 стран показывает, как ИИ, обретя топливо из океанов данных, сворачивает узкий коридор демократии до размеров замочной скважины.
Эта работа демонстрирует, что в гонке данных и ИИ государство предпочитает садится в кресло пилота. В результате этого:
• чем плотнее государство подгребает под себя базы данных, тем легче алгоритмы превращаются в роботов-санитаров автократий, смазывая шестерни цензуры и отключений быстрее, чем мы успеваем осмыслить push-уведомления;
• чем больше роль и вес государства в развитии и внедрении ИИ-технологий, тем быстрее ИИ становится его естественным «инфо-симбионтом», выполняющим роль «экзоскелета Левиафана». Этот «инфо-симбионт» несоизмеримо тоньше, искусней, эффективней и незаметней, чем все предыдущие поколения медиа вместе взятые, усиливает цензуру и контроль, перекраивая общественную инфореальность через глобальную слежку, контент-фильтры и социохакинг.


Эконометрика исследования довольно строгая: связка строгой панельной экономики динамической регрессии Arellano–Bond с моделью Аджемоглу–Робинсона, эмпирическая аккуратность, визионерский размах (обсуждение LEO-созвездий и «ИИ-тократий» превращает сухие коэффициенты в геополитический прогноз, достойный научной фантастики).
И всё это с учётом структурных сдвигов:
• сначала 2012-го, когда соцсети стали глобальными капиллярами информации;
• потом 2017-го, когда дипфейки начали массово искажать реальность, подобно осколку зеркала злого тролля, попавшему в глаз Кая;
• и наконец 2022, когда «революция ChatGPT» за 2 месяца пробила потолок 100 млн активных пользователей, превратив ИИ-чатботы в «оружие массового убеждения».

Но за диковинным лесом коэффициентов виден сюжет куда грандиозней: ИИ и власть вступили в инфо-симбиоз, напоминающий океан Соляриса у Лема — организм столь гигантский, что наши политические институты для него лишь, как легко обтекаемые рифы.

Что дальше?
Если данные — нефть XXI века, то цифровые трубопроводы уже принадлежат немногим. ИИ становится идеальным «экзоскелетом Левиафана»: машина считывает биометрию толпы, предсказывает протестные вспышки и перекраивает реальность через контент-фильтры прежде, чем возникает сам протестный лозунг. Демократия же в этой модели выглядит не парламентом, а игрой на опережение латентных векторов: достаточно сместить несколько весов — и политический плюрализм схлопывается в «единственно верный» тренд.

Но будущее не предрешено. И оно зависит от того, кому будет принадлежать зеркало, отражающее будущее нашей инфореальности.


Уже возникает «партизанский» ИИ-андерграунд: открытые языковые модели, mesh-сети из смартфонов и низкоорбитальные спутники-лилипуты, способные перебить монополию трафика. Подобно Гольфстриму в океане, течения ИИ-андеграунда, в которых каждый узел выступает масс-медиа гутенберговской мощи, способны менять инфо-климат стран и целых материков. В такой экосистеме алгоритмы станут не дубинкой власти и не «социальным лазером» (см. мои посты с тэгом #СоциальныйЛазер), а общим чувством ритма, по которому общество настраивает свою гражданскую «оркестровку».

Вот наша дилемма 2030-х: 
• либо мы превратим ИИ в зеркальный купол, усиливающий эхо одного голоса «инфо-симбионта» вертикальной власти,
• либо в «цифровой Парнас», цифровое общественное пространство, где ИИ служит катализатором коллективного творчества и самоуправления, а не усилителем и «социальным лазером» вертикальной власти.


Ключ к выбору варианта будущего, как показывают авторы исследования, не в архитектуре и кодах LLM, а в правах собственности на данные. Распределите эти права в пользу граждан, и «экзоскелет Левиафана» ослабит удушающую хватку демократии и свобод. Вопрос не технологический, а почти метафизический: кому принадлежит зеркало, отражающее наше будущее?

#СоциальныйЛазер #ИнформационныеАвтократии #Социохакинг

_______
Источник | #theworldisnoteasy
🤮3👀2👍1🤔1