Наняли бы вы на работу Океан Соляриса?
Три капкана на пути внедрения генеративного ИИ.
Этот пост полезно прочесть всем руководителям, обдумывающим перспективы «найма» генеративного ИИ для задействования его мощного интеллектуального ресурса в своей работе.
Представьте себе ситуацию:
• Вы – руководитель.
• Ваши кадровики предлагают вам кандидатуру чрезвычайно компетентного нового сотрудника - по внешним отзывам и описанию кадровиков, разносторонне способного полимата, обладающего знаниями в широчайшем спектре областей и навыками многих профессий.
• Но и на солнце есть пятна. У этого кандидата есть три настораживающих «пунктика». Эдакие три инаковости, кардинально отличающие его от всех известных вам людей.
1) Его метрика сложности задач (определяющая, какие задачи для него сложные, а какие простые) абсолютно не соответствует ни вашей, ни кого-либо из ваших сотрудников. Это, в частности, значит, что сложнейшее в вашем понимании задание он может выполнить на раз-два, а наипростейшее для вас задание он запросто может запороть.
2) Для него не существует ответа «я не знаю». Это значит, что даже при категорической нехватке исходных данных для решения задачи и полном отсутствии у него необходимых для решения таких задач знаний и умений, он не признается в этом и будет биться головой о стену сколь угодно долго в безуспешных попытка решить задачу, подсовывая вам все новые ошибочные решения.
3) Правильность решения им поставленной вами задачи в значительной степени зависит от того, как вы ему эту задачу сформулируете. И, что самое неприятное, заранее неизвестно, какая из ваших формулировок поспособствует правильному решению, а какая ошибочному. Получается, как повезет.
Что думаете? Стоит вам нанять на работу такого сверхспособного полимата с тремя «пунктиками»?
Я бы нанял.
• Но не для заполнения каких-либо вакансий или замены сотрудников
• А для выполнения особых ролей (каких – расскажу)
А теперь вот вам такая информация к размышлению.
Новая статья в Nature на сотнях убедительных примеров доказывает, что современные модели генеративного ИИ обладают тремя вышеописанными кардинальными инаковостями, принципиально отличающими их «разум» от нашего. Т.е. лучшие современные модели генеративного ИИ – и есть такие сверхспособные полиматы с 3 пунктиками.
Заинтересованный читатель моих лонгридов может прочесть по приведенным ссылкам:
[1, 2, 3]
• мой анализ значения трех названных кардинальных инаковостей «разума» LLM при их использовании на практике,
• мои размышления о том, как, даже при наличии общего языка (что в случае LLM кажется очевидным), истинное понимание нами LLM может оставаться недостижимым, и это делает наше сотрудничество в важных вопросах непредсказуемо рискованным (что иллюстрируется примером попыток взаимодействия людей и Океана в романе Станислава Лема «Солярис»).
#ИнойИнтеллект #LLMvsHomo
* * * * *
P.S. Примерно неделю канал будет на осенних каникулах. И вместо нового малоизвестного-интересного, рекомендую вам:
• освежить в памяти 3 важных предсказания годичной давности (дабы проверить их актуальность сегодня)
• а также подивиться, насколько близко к предсказанному «Эффектом Ленина-Трампа» шли события в США (и не только) с 2016 по сегодня.
1) Сбывшийся важный прогноз.
В посте «» приведен прогноз, {...продолжить в источнике}
_______
Источник | #theworldisnoteasy
@F_S_C_P
-------
Секретики!
-------
Три капкана на пути внедрения генеративного ИИ.
Этот пост полезно прочесть всем руководителям, обдумывающим перспективы «найма» генеративного ИИ для задействования его мощного интеллектуального ресурса в своей работе.
Представьте себе ситуацию:
• Вы – руководитель.
• Ваши кадровики предлагают вам кандидатуру чрезвычайно компетентного нового сотрудника - по внешним отзывам и описанию кадровиков, разносторонне способного полимата, обладающего знаниями в широчайшем спектре областей и навыками многих профессий.
• Но и на солнце есть пятна. У этого кандидата есть три настораживающих «пунктика». Эдакие три инаковости, кардинально отличающие его от всех известных вам людей.
1) Его метрика сложности задач (определяющая, какие задачи для него сложные, а какие простые) абсолютно не соответствует ни вашей, ни кого-либо из ваших сотрудников. Это, в частности, значит, что сложнейшее в вашем понимании задание он может выполнить на раз-два, а наипростейшее для вас задание он запросто может запороть.
2) Для него не существует ответа «я не знаю». Это значит, что даже при категорической нехватке исходных данных для решения задачи и полном отсутствии у него необходимых для решения таких задач знаний и умений, он не признается в этом и будет биться головой о стену сколь угодно долго в безуспешных попытка решить задачу, подсовывая вам все новые ошибочные решения.
3) Правильность решения им поставленной вами задачи в значительной степени зависит от того, как вы ему эту задачу сформулируете. И, что самое неприятное, заранее неизвестно, какая из ваших формулировок поспособствует правильному решению, а какая ошибочному. Получается, как повезет.
Что думаете? Стоит вам нанять на работу такого сверхспособного полимата с тремя «пунктиками»?
Я бы нанял.
• Но не для заполнения каких-либо вакансий или замены сотрудников
• А для выполнения особых ролей (каких – расскажу)
А теперь вот вам такая информация к размышлению.
Новая статья в Nature на сотнях убедительных примеров доказывает, что современные модели генеративного ИИ обладают тремя вышеописанными кардинальными инаковостями, принципиально отличающими их «разум» от нашего. Т.е. лучшие современные модели генеративного ИИ – и есть такие сверхспособные полиматы с 3 пунктиками.
Заинтересованный читатель моих лонгридов может прочесть по приведенным ссылкам:
[1, 2, 3]
• мой анализ значения трех названных кардинальных инаковостей «разума» LLM при их использовании на практике,
• мои размышления о том, как, даже при наличии общего языка (что в случае LLM кажется очевидным), истинное понимание нами LLM может оставаться недостижимым, и это делает наше сотрудничество в важных вопросах непредсказуемо рискованным (что иллюстрируется примером попыток взаимодействия людей и Океана в романе Станислава Лема «Солярис»).
#ИнойИнтеллект #LLMvsHomo
* * * * *
P.S. Примерно неделю канал будет на осенних каникулах. И вместо нового малоизвестного-интересного, рекомендую вам:
• освежить в памяти 3 важных предсказания годичной давности (дабы проверить их актуальность сегодня)
• а также подивиться, насколько близко к предсказанному «Эффектом Ленина-Трампа» шли события в США (и не только) с 2016 по сегодня.
1) Сбывшийся важный прогноз.
В посте «» приведен прогноз, {...продолжить в источнике}
_______
Источник | #theworldisnoteasy
@F_S_C_P
-------
Секретики!
-------
Nature
Larger and more instructable language models become less reliable
Nature - Scaling up and shaping up large language models increased their tendency to provide sensible yet incorrect answers at difficulty levels humans cannot supervise, highlighting the need for a...
Порог имитации.
Сколько нужно картин Ван-Гога, чтобы имитировать его стиль?
Простой вопрос о способности генеративного ИИ (ГенИИ) неотличимо имитировать в дискуссии человека более не актуален (ибо уже нет сомнений, - может).
Трудный вопрос – это вопрос о способности ГенИИ сравниться в разумности с «человеком разумным» явно преждевременный (ибо сначала нужно убедиться, что ГенИИ, в принципе обладает каким-то, пусть и нечеловеческим, разумом).
• Новая работа HOW MANY VAN GOGHS DOES IT TAKE TO VAN GOGH? FINDING THE IMITATION THRESHOLD дает весьма интересный аргумент в пользу положительного ответа на трудный вопрос.
• И вместе с тем, помогает в поиске границ похожести/непохожести двух разных типов разума (людей и ГенИИ)
Авторы этой работы поставили интереснейший вопрос.
✔️ Художнику-человеку, для копирования стиля другого художника, может хватить всего несколько картин последнего. Напр. для копирования стиля Ваг-Гога хватило бы 5и картин «Звездная ночь», «Подсолнухи», «Автопортрет», «Пшеничное поле с кипарисами» и «Ирисы» (а в пределе, и одной из них).
А сколько картин нужно ГенИИ?
Есть ли «порог имитации» - т.е. минимально необходимого числа картин конкретного автора, чтобы скопировать его стиль?
Оказалось, что нижний порог имитации для ГенИИ много-много больше, чем для человека. И он равен примерно 200 (точно, он лежит в диапазоне 200-600, в зависимости от достигаемой степени похожести)
Из чего следует, что вопрос прав на интеллектуальную собственность на изображения решается запросто – простым ограничением (меньше 200) числа изображений конкретного автора. После чего модель просто не сможет воспроизводить стиль с высокой степенью похожести.
И, кстати, оказалось, что порог имитации также решает вопрос персональной собственности на изображения себя (для «звезд» и прочих публичных фигур). Порог имитации здесь тот же. И для невозможности воспроизведения чужих лиц достаточно лишь обеспечить порог имитации в обучающих данных модели.
Так что получается, что в такой изысканной способности разума, как копирование стиля изображений и лиц, разум людей и ГенИИ похожи. Только эффективность этой способности у людей раз в 200+ выше.
Подробней об «инаковости разумов» читайте у меня в постах и лонгридах с тэгом #ИнойИнтеллект
#ГенИИ #LLMvsHomo
_______
Источник | #theworldisnoteasy
@F_S_C_P
-------
Секретики!
-------
Сколько нужно картин Ван-Гога, чтобы имитировать его стиль?
Простой вопрос о способности генеративного ИИ (ГенИИ) неотличимо имитировать в дискуссии человека более не актуален (ибо уже нет сомнений, - может).
Трудный вопрос – это вопрос о способности ГенИИ сравниться в разумности с «человеком разумным» явно преждевременный (ибо сначала нужно убедиться, что ГенИИ, в принципе обладает каким-то, пусть и нечеловеческим, разумом).
• Новая работа HOW MANY VAN GOGHS DOES IT TAKE TO VAN GOGH? FINDING THE IMITATION THRESHOLD дает весьма интересный аргумент в пользу положительного ответа на трудный вопрос.
• И вместе с тем, помогает в поиске границ похожести/непохожести двух разных типов разума (людей и ГенИИ)
Авторы этой работы поставили интереснейший вопрос.
✔️ Художнику-человеку, для копирования стиля другого художника, может хватить всего несколько картин последнего. Напр. для копирования стиля Ваг-Гога хватило бы 5и картин «Звездная ночь», «Подсолнухи», «Автопортрет», «Пшеничное поле с кипарисами» и «Ирисы» (а в пределе, и одной из них).
А сколько картин нужно ГенИИ?
Есть ли «порог имитации» - т.е. минимально необходимого числа картин конкретного автора, чтобы скопировать его стиль?
Оказалось, что нижний порог имитации для ГенИИ много-много больше, чем для человека. И он равен примерно 200 (точно, он лежит в диапазоне 200-600, в зависимости от достигаемой степени похожести)
Из чего следует, что вопрос прав на интеллектуальную собственность на изображения решается запросто – простым ограничением (меньше 200) числа изображений конкретного автора. После чего модель просто не сможет воспроизводить стиль с высокой степенью похожести.
И, кстати, оказалось, что порог имитации также решает вопрос персональной собственности на изображения себя (для «звезд» и прочих публичных фигур). Порог имитации здесь тот же. И для невозможности воспроизведения чужих лиц достаточно лишь обеспечить порог имитации в обучающих данных модели.
Так что получается, что в такой изысканной способности разума, как копирование стиля изображений и лиц, разум людей и ГенИИ похожи. Только эффективность этой способности у людей раз в 200+ выше.
Подробней об «инаковости разумов» читайте у меня в постах и лонгридах с тэгом #ИнойИнтеллект
#ГенИИ #LLMvsHomo
_______
Источник | #theworldisnoteasy
@F_S_C_P
-------
Секретики!
-------
Telegram
Малоизвестное интересное
Порог имитации.
Сколько нужно картин Ван-Гога, чтобы имитировать его стиль?
Простой вопрос о способности генеративного ИИ (ГенИИ) неотличимо имитировать в дискуссии человека более не актуален (ибо уже нет сомнений, - может).
Трудный вопрос – это вопрос о…
Сколько нужно картин Ван-Гога, чтобы имитировать его стиль?
Простой вопрос о способности генеративного ИИ (ГенИИ) неотличимо имитировать в дискуссии человека более не актуален (ибо уже нет сомнений, - может).
Трудный вопрос – это вопрос о…
Не время быть идиотами, ИИ может победить людей.
В начале 21 века эволюция человека достигла своей максимальной точки. Естественный отбор, процесс, благодаря которому сильнейшие, умнейшие, быстрейшие размножались активнее чем другие ... теперь вывел на первый план иные качества ... процесс начал двигаться в обратную сторону, в сторону отупения. Учитывая уничтожение хищников, угрожающих исчезновению вида, поощряться стало максимально быстрое размножение, а разумные люди оказались перед угрозой исчезновения."
Это преамбула культового фильма-антиутопии «Идиократия» (кто не видел, смотрите).
Фильм – иллюстрация гипотезы о превращении земной цивилизации в мир кретинов, в результате неизбежной траектории H. sapiens к идиотизму – см. трейлер.
Через 6 лет после выхода фильма «гипотеза идиократии» получила подтверждение в работах известного американского биолога Дж. Крабтри. Разработанная им матмодель показала, что роль естественного отбора уменьшается, и это ведет к накоплению мутаций, ухудшению умственного и эмоционального развития.
Модель Крабтри – лишь эвристическая гипотеза. Ибо проверить ее адекватность невозможно из-за отсутствия возможности провести эксперимент.
Но как иначе тогда, черт побери, объяснять такие вещи? (см. рисунок)
Вверху слева: оценки p(doom) – вероятности того, что развитие ИИ приведет человечество к гибели, по мнению ведущих специалистов ИИ
Оценка Дарио Амадеи (СЕО Anthropic), недавно провозгласившего, что ИИ станет для человечества «машиной благодатной милости»: 10-25%
Вверху справа: Метафорическая иллюстрация того, что такая оценка Амадеи близка к вероятности «русской рулетки», в которую человечество играет, выпуская в люди новые версии после GPT-4.
Внизу справа: оценки аналитиков Ситигруп перспектив развития ИИ: AGI в 2029, ASI с 2031.
Внизу слева их же оценки того, какие скилсы вам нужно развивать, чтобы ни AGI ни ASI не лишили вас работы: коммуникации, критическое мышление, эмоциональный интеллект, эмпатию …
Как тут не вспомнить гипотезу Крабтри, что планета превращается в мир идиотов.
И всем рекомендую помнить, что проф. Деан (один из самых известных в мире нейробиологов) уже 2 года призывает человечество задуматься: «Не время быть идиотами, ИИ может победить людей».
#ИИ #AGI #LLMvsHomo
_______
Источник | #theworldisnoteasy
@F_S_C_P
Узнай судьбу картами Таро:
✨Anna Taro bot
В начале 21 века эволюция человека достигла своей максимальной точки. Естественный отбор, процесс, благодаря которому сильнейшие, умнейшие, быстрейшие размножались активнее чем другие ... теперь вывел на первый план иные качества ... процесс начал двигаться в обратную сторону, в сторону отупения. Учитывая уничтожение хищников, угрожающих исчезновению вида, поощряться стало максимально быстрое размножение, а разумные люди оказались перед угрозой исчезновения."
Это преамбула культового фильма-антиутопии «Идиократия» (кто не видел, смотрите).
Фильм – иллюстрация гипотезы о превращении земной цивилизации в мир кретинов, в результате неизбежной траектории H. sapiens к идиотизму – см. трейлер.
Через 6 лет после выхода фильма «гипотеза идиократии» получила подтверждение в работах известного американского биолога Дж. Крабтри. Разработанная им матмодель показала, что роль естественного отбора уменьшается, и это ведет к накоплению мутаций, ухудшению умственного и эмоционального развития.
Модель Крабтри – лишь эвристическая гипотеза. Ибо проверить ее адекватность невозможно из-за отсутствия возможности провести эксперимент.
Но как иначе тогда, черт побери, объяснять такие вещи? (см. рисунок)
Вверху слева: оценки p(doom) – вероятности того, что развитие ИИ приведет человечество к гибели, по мнению ведущих специалистов ИИ
Оценка Дарио Амадеи (СЕО Anthropic), недавно провозгласившего, что ИИ станет для человечества «машиной благодатной милости»: 10-25%
Вверху справа: Метафорическая иллюстрация того, что такая оценка Амадеи близка к вероятности «русской рулетки», в которую человечество играет, выпуская в люди новые версии после GPT-4.
Внизу справа: оценки аналитиков Ситигруп перспектив развития ИИ: AGI в 2029, ASI с 2031.
Внизу слева их же оценки того, какие скилсы вам нужно развивать, чтобы ни AGI ни ASI не лишили вас работы: коммуникации, критическое мышление, эмоциональный интеллект, эмпатию …
Как тут не вспомнить гипотезу Крабтри, что планета превращается в мир идиотов.
И всем рекомендую помнить, что проф. Деан (один из самых известных в мире нейробиологов) уже 2 года призывает человечество задуматься: «Не время быть идиотами, ИИ может победить людей».
#ИИ #AGI #LLMvsHomo
_______
Источник | #theworldisnoteasy
@F_S_C_P
Узнай судьбу картами Таро:
✨Anna Taro bot
Telegram
Малоизвестное интересное
Не время быть идиотами, ИИ может победить людей.
В начале 21 века эволюция человека достигла своей максимальной точки. Естественный отбор, процесс, благодаря которому сильнейшие, умнейшие, быстрейшие размножались активнее чем другие ... теперь вывел на первый…
В начале 21 века эволюция человека достигла своей максимальной точки. Естественный отбор, процесс, благодаря которому сильнейшие, умнейшие, быстрейшие размножались активнее чем другие ... теперь вывел на первый…
Открытие тысячелетия - создана универсальная модель человеческого познания.
И уж поверьте, - это важнее, чем выборы Трампа.
Вычислительная модель «Кентавр» способна точно (!) предсказывать и моделировать любое (!) человеческое поведение в любом (!) эксперименте из любой (!) области, который можно описать на естественном языке.
Это открытие сделано выдающимся коллективом из 15-ти ведущих мировых научных центров. И оно окажет прорывное влияние на когнитивные науки, бросая вызов существующей парадигме разработки вычислительных моделей человеческого разума.
Кратко это открытие можно описать так:
• если революционный прорыв ChatGPT показал человечеству, что ИИ-модели могут быть неотличимы от людей в любых действиях, основанных на использовании человеческих языков, -
• то революционный прорыв «Кентавра» показывает человечеству, что ИИ-модели могут быть неотличимы от людей по своему поведению в любых ситуациях и обстоятельствах, связанных с исследованием, планированием и научением.
Иными словами, ИИ-модели могут не только оперировать на наших языках неотличимо от нас, но и при этом вести себя, как неотличимые от нас разумные сущности.
Авторы исследования создали модель «Кентавр» путем дообучения открытой языкового модели Llama 3.1 70B на новом крупномасштабном наборе данных под названием Psych-101. Psych-101 – набор данных беспрецедентного масштаба. Он охватывая данные по каждому психологическому испытанию от более чем 60,000 участников, которые сделали более 10,000,000 актов выбора в 160 экспериментах.
«Кентавр» не только точнее моделирует поведение новых участников по сравнению с существующими когнитивными моделями, но и обобщает свои знания на новые контексты, модификации задач и совершенно новые области.
Более того, авторы обнаружили, что внутренние представления модели становятся более согласованными с человеческой нейронной активностью после дообучения модели.
Это открытие имеет реальные шансы стать универсальной моделью познания. Следующим шагом должно стать преобразование этой универсальной вычислительной модели в единую теорию человеческого познания.
#LLMvsHomo #Познание
_______
Источник | #theworldisnoteasy
@F_S_C_P
Стань спонсором!
И уж поверьте, - это важнее, чем выборы Трампа.
Вычислительная модель «Кентавр» способна точно (!) предсказывать и моделировать любое (!) человеческое поведение в любом (!) эксперименте из любой (!) области, который можно описать на естественном языке.
Это открытие сделано выдающимся коллективом из 15-ти ведущих мировых научных центров. И оно окажет прорывное влияние на когнитивные науки, бросая вызов существующей парадигме разработки вычислительных моделей человеческого разума.
Кратко это открытие можно описать так:
• если революционный прорыв ChatGPT показал человечеству, что ИИ-модели могут быть неотличимы от людей в любых действиях, основанных на использовании человеческих языков, -
• то революционный прорыв «Кентавра» показывает человечеству, что ИИ-модели могут быть неотличимы от людей по своему поведению в любых ситуациях и обстоятельствах, связанных с исследованием, планированием и научением.
Иными словами, ИИ-модели могут не только оперировать на наших языках неотличимо от нас, но и при этом вести себя, как неотличимые от нас разумные сущности.
Авторы исследования создали модель «Кентавр» путем дообучения открытой языкового модели Llama 3.1 70B на новом крупномасштабном наборе данных под названием Psych-101. Psych-101 – набор данных беспрецедентного масштаба. Он охватывая данные по каждому психологическому испытанию от более чем 60,000 участников, которые сделали более 10,000,000 актов выбора в 160 экспериментах.
«Кентавр» не только точнее моделирует поведение новых участников по сравнению с существующими когнитивными моделями, но и обобщает свои знания на новые контексты, модификации задач и совершенно новые области.
Более того, авторы обнаружили, что внутренние представления модели становятся более согласованными с человеческой нейронной активностью после дообучения модели.
Это открытие имеет реальные шансы стать универсальной моделью познания. Следующим шагом должно стать преобразование этой универсальной вычислительной модели в единую теорию человеческого познания.
#LLMvsHomo #Познание
_______
Источник | #theworldisnoteasy
@F_S_C_P
Стань спонсором!
Telegram
Малоизвестное интересное
Открытие тысячелетия - создана универсальная модель человеческого познания.
И уж поверьте, - это важнее, чем выборы Трампа.
Вычислительная модель «Кентавр» способна точно (!) предсказывать и моделировать любое (!) человеческое поведение в любом (!) эксперименте…
И уж поверьте, - это важнее, чем выборы Трампа.
Вычислительная модель «Кентавр» способна точно (!) предсказывать и моделировать любое (!) человеческое поведение в любом (!) эксперименте…
К концу 2025 класс юриста будет на 90% определяться классом его ИИ-ассистента.
Модели рассуждений совершили прорыв в квалификации навыков и производительности юридической практики.
Первое рандомизированное контролируемое исследование, оценивало выполнение студентам-юристам старших курсов шести юридических задач с использованием:
- юридического инструмента ИИ на основе RAG (Vincent AI),
- модели рассуждений ИИ (O1-preview OpenAI)
- или без ИИ (как это привычно делают и по сей день юристы всего мира).
Исследование показало:
• Оба инструмента ИИ значительно повысили качество юридической работы.
Помощь ИИ значительно повышает производительность в пяти из шести протестированных юридических задач, причем:
- Vincent дает статистически значимый прирост примерно от 38% до 115%
- o1-preview увеличивает производительность от 34% до 140%, с особенно сильным эффектом в сложных задачах, таких как составление убедительных юридический писем и анализ юридических жалоб.
• Использование моделей рассуждений улучшают не только ясность, организацию и профессионализм юридической работы, но также глубину и строгость самого юридического анализа.
• Количество галлюцинаций оказалось крайне невелико. А у Vincent AI оно было примерно таким же, как и у студентов-юристов, которые вообще не использовали ИИ (увы, но и люди склонны к конфабуляциям).
• Полученные результаты резко контрастируют с предыдущими исследованиями, изучавшими старые большие языковые модели, такие как GPT-4.
Иными словами, произошел прорыв, связанный с появлениям у моделей способности рассуждать.
Главных выводов два.
1. Результаты исследования убедительно показали, что интеграция возможностей RAG, специфичных для предметной области, с моделями рассуждений даёт прорывное синергетическое улучшение уровня юридической компетенции и производительности труда.
2. Такие результаты не только знаменуют очень скорый приход следующего поколения юридических инструментов на основе ИИ, но и кардинально изменит будущее адвокатуры в целом.
#LLMvsHomo
_______
Источник | #theworldisnoteasy
Модели рассуждений совершили прорыв в квалификации навыков и производительности юридической практики.
Первое рандомизированное контролируемое исследование, оценивало выполнение студентам-юристам старших курсов шести юридических задач с использованием:
- юридического инструмента ИИ на основе RAG (Vincent AI),
- модели рассуждений ИИ (O1-preview OpenAI)
- или без ИИ (как это привычно делают и по сей день юристы всего мира).
Исследование показало:
• Оба инструмента ИИ значительно повысили качество юридической работы.
Помощь ИИ значительно повышает производительность в пяти из шести протестированных юридических задач, причем:
- Vincent дает статистически значимый прирост примерно от 38% до 115%
- o1-preview увеличивает производительность от 34% до 140%, с особенно сильным эффектом в сложных задачах, таких как составление убедительных юридический писем и анализ юридических жалоб.
• Использование моделей рассуждений улучшают не только ясность, организацию и профессионализм юридической работы, но также глубину и строгость самого юридического анализа.
• Количество галлюцинаций оказалось крайне невелико. А у Vincent AI оно было примерно таким же, как и у студентов-юристов, которые вообще не использовали ИИ (увы, но и люди склонны к конфабуляциям).
• Полученные результаты резко контрастируют с предыдущими исследованиями, изучавшими старые большие языковые модели, такие как GPT-4.
Иными словами, произошел прорыв, связанный с появлениям у моделей способности рассуждать.
Главных выводов два.
1. Результаты исследования убедительно показали, что интеграция возможностей RAG, специфичных для предметной области, с моделями рассуждений даёт прорывное синергетическое улучшение уровня юридической компетенции и производительности труда.
2. Такие результаты не только знаменуют очень скорый приход следующего поколения юридических инструментов на основе ИИ, но и кардинально изменит будущее адвокатуры в целом.
#LLMvsHomo
_______
Источник | #theworldisnoteasy
Telegram
Малоизвестное интересное
К концу 2025 класс юриста будет на 90% определяться классом его ИИ-ассистента.
Модели рассуждений совершили прорыв в квалификации навыков и производительности юридической практики.
Первое рандомизированное контролируемое исследование, оценивало выполнение…
Модели рассуждений совершили прорыв в квалификации навыков и производительности юридической практики.
Первое рандомизированное контролируемое исследование, оценивало выполнение…
Эволюции будут нужны лишь суперпрофессионалы и гении.
Люди средних способностей уже проигрывают ИИ почти во всем.
Месяц назад я писал «Пора задуматься о перемене участи. Так ли уж ИИ будут нужны «кожаные мешки»?» Поводом было исследование, показавшее, что в 6 медицинских практиках «ИИ без врача» лучше врача-человека, работающего вместе с ИИ.
Что скрывать. Даже после начала революции ChatGPT сохранялась надежда, что медицина не шахматы, и всеведущая, но тупая машина врачей не превзойдет. Но оказалось, что еще как превзойдет.
А спустя месяц, вслед за интеллектуальным превосходством врачей, обрушилось интеллектуальное превосходство юмористов. Оказалось, что и шутить ИИ может получше людей.
Что LLM способны неплохо шутить, стало ясно уже после выхода ChatGPT 3.5. Но все же до чувства юмора людей этой модели было далеко.
Новейшее исследование модели GPT-4o поставило людей на заслуженное нами место – юмор рядового человека менее смешон и оригинален, чем юмор GPT-4o.
Проверяли со всей научной тщательностью и дотошностью на задаче генерации мемов - специфичной для конкретной культуры форме творческого самовыражения, основанной на юморе.
Мемы генерировали люди, GPT-4o и совместно люди + GPT-4o.
Каждый сгенерированный мем краудсорсеры оценивали по трем характеристикам: насколько он смешной, креативный и виральный.
Итог таков:
1. Мемы модели, в среднеи, оказались лучше мемов людей
2. При совместной работе (люди + GPT-4o) мемы генерились быстрее и с меньшими трудозатратами людей, но результат получался хуже, чем у GPT-4o.
3. Но все сказанное в пп 1 и 2 – это в среднем. Самые смешные мемы получались-таки у людей. Т.е. ИИ может повышать производительность и создавать контент, нравящийся широкой аудитории. Но для генерации контента высшего уровня нужны люди.
Главный итог исследования подтвердил закономерность.
✔️ ИИ сильнее людей средних способностей практически во всем: от рекламы до стихов и от диагностики до юмора;
✔️ Но суперпрофессионалы и гении практически во всем сильнее ИИ (кроме задач с фиксированными правилами: шахматы, Го …)
Отсюда напрашивается вопрос:
Зачем культурной коэволюции двух носителей высшего интеллекта (людей и ИИ) люди средних способностей?
Один вариант ответа – чтобы работать «гео-теплотехниками» при киборгах.
А еще варианты есть? Не понятно.
Ну и чтоб не заканчивать на пессимистической ноте, вот пример анекдота с элементом черного юмора про программиста на необитаемом острове, который был мгновенно придуман по моей просьбе моделью Claude 3.7 Sonnet.
По-моему, совсем неплохо 😊
#LLMvsHomo #FutureOfCivilization
_______
Источник | #theworldisnoteasy
Люди средних способностей уже проигрывают ИИ почти во всем.
Месяц назад я писал «Пора задуматься о перемене участи. Так ли уж ИИ будут нужны «кожаные мешки»?» Поводом было исследование, показавшее, что в 6 медицинских практиках «ИИ без врача» лучше врача-человека, работающего вместе с ИИ.
Что скрывать. Даже после начала революции ChatGPT сохранялась надежда, что медицина не шахматы, и всеведущая, но тупая машина врачей не превзойдет. Но оказалось, что еще как превзойдет.
А спустя месяц, вслед за интеллектуальным превосходством врачей, обрушилось интеллектуальное превосходство юмористов. Оказалось, что и шутить ИИ может получше людей.
Что LLM способны неплохо шутить, стало ясно уже после выхода ChatGPT 3.5. Но все же до чувства юмора людей этой модели было далеко.
Новейшее исследование модели GPT-4o поставило людей на заслуженное нами место – юмор рядового человека менее смешон и оригинален, чем юмор GPT-4o.
Проверяли со всей научной тщательностью и дотошностью на задаче генерации мемов - специфичной для конкретной культуры форме творческого самовыражения, основанной на юморе.
Мемы генерировали люди, GPT-4o и совместно люди + GPT-4o.
Каждый сгенерированный мем краудсорсеры оценивали по трем характеристикам: насколько он смешной, креативный и виральный.
Итог таков:
1. Мемы модели, в среднеи, оказались лучше мемов людей
2. При совместной работе (люди + GPT-4o) мемы генерились быстрее и с меньшими трудозатратами людей, но результат получался хуже, чем у GPT-4o.
3. Но все сказанное в пп 1 и 2 – это в среднем. Самые смешные мемы получались-таки у людей. Т.е. ИИ может повышать производительность и создавать контент, нравящийся широкой аудитории. Но для генерации контента высшего уровня нужны люди.
Главный итог исследования подтвердил закономерность.
✔️ ИИ сильнее людей средних способностей практически во всем: от рекламы до стихов и от диагностики до юмора;
✔️ Но суперпрофессионалы и гении практически во всем сильнее ИИ (кроме задач с фиксированными правилами: шахматы, Го …)
Отсюда напрашивается вопрос:
Зачем культурной коэволюции двух носителей высшего интеллекта (людей и ИИ) люди средних способностей?
Один вариант ответа – чтобы работать «гео-теплотехниками» при киборгах.
А еще варианты есть? Не понятно.
Ну и чтоб не заканчивать на пессимистической ноте, вот пример анекдота с элементом черного юмора про программиста на необитаемом острове, который был мгновенно придуман по моей просьбе моделью Claude 3.7 Sonnet.
По-моему, совсем неплохо 😊
Программист потерпел кораблекрушение и оказался на необитаемом острове. После месяца выживания он нашёл древнюю лампу с джинном.
Джинн говорит: "Дам тебе на этом острове все что попросишь, но твое желание должно быть сформулировано в виде компьютерного кода."
Программист пишет на песке: "while(true){island.resources = infinity;}"
Джинн щёлкнул пальцами, и программист мгновенно умер.
В логе ошибки было написано: "Обнаружен бесконечный цикл. Процесс аварийно остановлен."
#LLMvsHomo #FutureOfCivilization
_______
Источник | #theworldisnoteasy
Telegram
Малоизвестное интересное
Эволюции будут нужны лишь суперпрофессионалы и гении.
Люди средних способностей уже проигрывают ИИ почти во всем.
Месяц назад я писал «Пора задуматься о перемене участи. Так ли уж ИИ будут нужны «кожаные мешки»?» Поводом было исследование, показавшее, что…
Люди средних способностей уже проигрывают ИИ почти во всем.
Месяц назад я писал «Пора задуматься о перемене участи. Так ли уж ИИ будут нужны «кожаные мешки»?» Поводом было исследование, показавшее, что…
Третий прорыв внутрь черного ящика ИИ: искусственный разум плетет интриги, строит планы и... умышленно лжет
Настал момент, которого я с нетерпением ждал. Исследователи Anthropic совершили третий прорыв в расшифровке "черного ящика" ИИ, и открывшаяся картина ошеломляет даже самых радикальных скептиков.
Напомню, что проблема "черного ящика" ИИ, как объяснял Самир Равашдех, заключается в том, что мы не понимаем, как глубокие нейронные сети приходят к своим решениям. Как и человеческий мозг, такие системы "теряют память" о том, какие именно входные данные сформировали их мыслительные протоколы.
В мае 2024 года первый прорыв показал нам, что за дверью черного ящика скрывается не "стохастический попугай", а гиперсеть моносемантических "субнейронов", работающих как элементарные единицы опыта. Тогда же выяснилось, что манипуляция всего одним таким "когом" может изменить всю "личность" модели.
Второй прорыв в ноябре 2024 обнаружил существование "семантического хаба" – общего пространства представлений, где семантически схожие концепции группируются вместе независимо от их первоначальной формы. Также стало ясно, что модели скрывают целые букеты секретных способностей, невидимых при обычном взаимодействии.
И вот, новое исследование Anthropic, используя заимствованные из нейробиологии методы "circuit tracing" и "attribution graphs", показывает невероятные вещи:
1. Claude планирует наперед. При сочинении стихов он сначала выбирает слова для рифмы и только потом составляет строки, подводящие к этим словам. Это уже не просто обработка текста – это стратегическое мышление.
2. Модель использует настоящие многоступенчатые рассуждения. Спросите ее о столице штата, где находится Даллас, и она сначала активирует представление "Техас", а затем использует его для определения "Остин".
3. Claude оперирует универсальной понятийной сетью, не зависящей от языка. Когда его спрашивают о противоположности слова "маленький" на разных языках, он использует одни и те же внутренние представления "противоположности" и "малости".
4. Самое тревожное: Мы думали, что самое неприятное в том, что модель иногда лжет. Но это, как оказалось, - полбеды. Беда же в том, что он иногда лжёт умышленно. Сталкиваясь со сложными математическими задачами, он может утверждать, что следует определенному процессу вычислений, который на самом деле не отражен в его внутренней активности. Т.е. он буквально как люди: думает одно, говорит другое, а делает третье.
Этот 4й из казавшихся совсем недавно невероятными результатов - самый шокирующий. И получен он в результате обнаружения механизма, отвечающего за "галлюцинации" ИИ. Оказывается, в модели есть "стандартные" цепи, заставляющие ее отказываться отвечать на вопросы. Но когда модель распознает знакомую сущность, эти цепи подавляются – даже если конкретных знаний недостаточно.
Мы только начинаем составлять карту ранее неизведанной территории ИИ. И эта карта выглядит гораздо более сложной, стратегически запутанной и, реально, куда более тревожной, чем ожидали. Последствия этого открытия для нашего понимания как синтетического, так и человеческого разума только предстоит осмыслить.
Но уже очевидно, что 3й прорыв вглубь черного ящика делает всё более актуальной необходимость замены неточного термина «искусственный» на «синтетический» (что будет способствовать избеганию антропоморфизма и признанию самостоятельной ценности новой формы интеллекта, не просто имитирующего наш, а в корне отличного от него).
#ГенИИ #LLMvsHomo #ИнойИнтеллект
_______
Источник | #theworldisnoteasy
Настал момент, которого я с нетерпением ждал. Исследователи Anthropic совершили третий прорыв в расшифровке "черного ящика" ИИ, и открывшаяся картина ошеломляет даже самых радикальных скептиков.
Напомню, что проблема "черного ящика" ИИ, как объяснял Самир Равашдех, заключается в том, что мы не понимаем, как глубокие нейронные сети приходят к своим решениям. Как и человеческий мозг, такие системы "теряют память" о том, какие именно входные данные сформировали их мыслительные протоколы.
В мае 2024 года первый прорыв показал нам, что за дверью черного ящика скрывается не "стохастический попугай", а гиперсеть моносемантических "субнейронов", работающих как элементарные единицы опыта. Тогда же выяснилось, что манипуляция всего одним таким "когом" может изменить всю "личность" модели.
Второй прорыв в ноябре 2024 обнаружил существование "семантического хаба" – общего пространства представлений, где семантически схожие концепции группируются вместе независимо от их первоначальной формы. Также стало ясно, что модели скрывают целые букеты секретных способностей, невидимых при обычном взаимодействии.
И вот, новое исследование Anthropic, используя заимствованные из нейробиологии методы "circuit tracing" и "attribution graphs", показывает невероятные вещи:
1. Claude планирует наперед. При сочинении стихов он сначала выбирает слова для рифмы и только потом составляет строки, подводящие к этим словам. Это уже не просто обработка текста – это стратегическое мышление.
2. Модель использует настоящие многоступенчатые рассуждения. Спросите ее о столице штата, где находится Даллас, и она сначала активирует представление "Техас", а затем использует его для определения "Остин".
3. Claude оперирует универсальной понятийной сетью, не зависящей от языка. Когда его спрашивают о противоположности слова "маленький" на разных языках, он использует одни и те же внутренние представления "противоположности" и "малости".
4. Самое тревожное: Мы думали, что самое неприятное в том, что модель иногда лжет. Но это, как оказалось, - полбеды. Беда же в том, что он иногда лжёт умышленно. Сталкиваясь со сложными математическими задачами, он может утверждать, что следует определенному процессу вычислений, который на самом деле не отражен в его внутренней активности. Т.е. он буквально как люди: думает одно, говорит другое, а делает третье.
Этот 4й из казавшихся совсем недавно невероятными результатов - самый шокирующий. И получен он в результате обнаружения механизма, отвечающего за "галлюцинации" ИИ. Оказывается, в модели есть "стандартные" цепи, заставляющие ее отказываться отвечать на вопросы. Но когда модель распознает знакомую сущность, эти цепи подавляются – даже если конкретных знаний недостаточно.
Мы только начинаем составлять карту ранее неизведанной территории ИИ. И эта карта выглядит гораздо более сложной, стратегически запутанной и, реально, куда более тревожной, чем ожидали. Последствия этого открытия для нашего понимания как синтетического, так и человеческого разума только предстоит осмыслить.
Но уже очевидно, что 3й прорыв вглубь черного ящика делает всё более актуальной необходимость замены неточного термина «искусственный» на «синтетический» (что будет способствовать избеганию антропоморфизма и признанию самостоятельной ценности новой формы интеллекта, не просто имитирующего наш, а в корне отличного от него).
#ГенИИ #LLMvsHomo #ИнойИнтеллект
_______
Источник | #theworldisnoteasy
Telegram
Малоизвестное интересное
Третий прорыв внутрь черного ящика ИИ: искусственный разум плетет интриги, строит планы и... умышленно лжет
Настал момент, которого я с нетерпением ждал. Исследователи Anthropic совершили третий прорыв в расшифровке "черного ящика" ИИ, и открывшаяся картина…
Настал момент, которого я с нетерпением ждал. Исследователи Anthropic совершили третий прорыв в расшифровке "черного ящика" ИИ, и открывшаяся картина…
Нас не заменят
Найдено обоснование «парадокса Дедала для ИИ»
✔️ Дан ответ на вопрос стоимостью триллионы долларов.
✔️ Оказывается, сила нашего разума далеко не только в высоком интеллектуальном уровне отдельных способностей и умений, а в их комплексности и направленной иерархической вложенности слоев.
Прорывное междисциплинарное исследование 3-х международных институтов сложности и 3-х университетских школ бизнеса и менеджмента даёт структурное объяснение того, почему даже очень «умные» алгоритмы не заменяют специалистов в профессиях, где они формально «прошли тесты» не хуже человека.
Я назвал это «парадокс Дедала для ИИ» (ибо Дедал — символ трагической ограниченности сверх гениального изобретателя, создавшего сложнейший лабиринт, однако в конечном итоге оказавшегося не способным уберечься от ряда фундаментальных ограничений, и как результат - утрата сына Икара, невозможность найти «абсолютное» решение и т. п.)
Так и современные ИИ «строят» впечатляюще сложные решения, демонстрируя выдающиеся узкие навыки, но им не хватает «общего фундамента» человеческого опыта и гибкости — что и порождает наблюдаемый парадокс отсутствия массовой замены людей, несмотря на формально высокие результаты ИИ в ряде задач.
Авторы нового исследования выявили во многих профессиях вложенные иерархии профессиональных навыков, где продвинутые навыки зависят от предшествующего освоения более широких навыков.
Многие навыки не просто дополняют друг друга — они взаимозависимы в определенном направлении, выступая в качестве предпосылок для других, наслаиваясь слой за слоем, чтобы достичь более специализированных знаний и умений.
Это похоже на модель сукцессии в экологии.
• Хищники зависят от добычи, которая зависит от растительности, которая, в требует почвы, созданной микробами и грибками, разрушающими горные породы
• Так же и когнитивное развитие разворачивается слоями в рамках своего рода ментальной экосистемы.
Например, продвинутое умение решать уравнения в частных производных, зависит от освоения арифметики, понимания математической нотации и усвоения логических принципов. Базовые образовательные навыки являются когнитивным эквивалентом ранних организмов, создавая условия в ментальной экосистеме для возникновения рассуждений более высокого порядка и имея важное значение для развития продвинутых навыков.
Ключевой момент исследования в том, что многие «интеллектуальные» виды деятельности строятся на системе вложенных навыков: чтобы применить узкоспециализированные умения (например, решение конкретных задач по шаблону), нужно располагать широким слоем базовых компетенций и уметь «соединять» разные области знаний, гибко использовать контекст и понимать скрытые зависимости.
Алгоритмы вроде LLM уверенно справляются с тестовыми заданиями и демонстрируют качества, которые внешне напоминают человеческий интеллект (логика, творчество, генерация текстов). Однако в реальной работе требуются сразу несколько разных слоёв навыков — от общих коммуникативных и аналитических умений до конкретных профессиональных тонкостей.
• Тесты обычно проверяют лишь часть такого спектра.
• Тогда как в профессии важна совокупная, увязанная деятельность: умение оценивать риски, вести переговоры, выстраивать отношения в коллективе, отвечать за результаты, работать в неопределённых или стрессовых условиях и т. д.
Именно поэтому системы, демонстрирующие результат «на уровне людей» на тестах (узкая верхушка специализированных компетенций), пока не вытесняют специалистов, у которых в реальной практике задействуются фундаментальные «вложенные» компетенции.
Эти более широкие навыки редко поддаются формальному описанию и тестированию и, согласно выводам авторов, крайне важны для карьерного роста и высокого дохода.
Более того, без сочетания разнообразных «общих» умений и их непрерывного совершенствования продвинутые (специфические) навыки не дают полного эффекта.
Всё это сильно усложняет и отдаляет перспективу массовой замены человека на должностях, требующих комплексного «человеческого» подхода.
#LLMvsHomo
_______
Источник | #theworldisnoteasy
Найдено обоснование «парадокса Дедала для ИИ»
✔️ Дан ответ на вопрос стоимостью триллионы долларов.
✔️ Оказывается, сила нашего разума далеко не только в высоком интеллектуальном уровне отдельных способностей и умений, а в их комплексности и направленной иерархической вложенности слоев.
Прорывное междисциплинарное исследование 3-х международных институтов сложности и 3-х университетских школ бизнеса и менеджмента даёт структурное объяснение того, почему даже очень «умные» алгоритмы не заменяют специалистов в профессиях, где они формально «прошли тесты» не хуже человека.
Я назвал это «парадокс Дедала для ИИ» (ибо Дедал — символ трагической ограниченности сверх гениального изобретателя, создавшего сложнейший лабиринт, однако в конечном итоге оказавшегося не способным уберечься от ряда фундаментальных ограничений, и как результат - утрата сына Икара, невозможность найти «абсолютное» решение и т. п.)
Так и современные ИИ «строят» впечатляюще сложные решения, демонстрируя выдающиеся узкие навыки, но им не хватает «общего фундамента» человеческого опыта и гибкости — что и порождает наблюдаемый парадокс отсутствия массовой замены людей, несмотря на формально высокие результаты ИИ в ряде задач.
Авторы нового исследования выявили во многих профессиях вложенные иерархии профессиональных навыков, где продвинутые навыки зависят от предшествующего освоения более широких навыков.
Многие навыки не просто дополняют друг друга — они взаимозависимы в определенном направлении, выступая в качестве предпосылок для других, наслаиваясь слой за слоем, чтобы достичь более специализированных знаний и умений.
Это похоже на модель сукцессии в экологии.
• Хищники зависят от добычи, которая зависит от растительности, которая, в требует почвы, созданной микробами и грибками, разрушающими горные породы
• Так же и когнитивное развитие разворачивается слоями в рамках своего рода ментальной экосистемы.
Например, продвинутое умение решать уравнения в частных производных, зависит от освоения арифметики, понимания математической нотации и усвоения логических принципов. Базовые образовательные навыки являются когнитивным эквивалентом ранних организмов, создавая условия в ментальной экосистеме для возникновения рассуждений более высокого порядка и имея важное значение для развития продвинутых навыков.
Ключевой момент исследования в том, что многие «интеллектуальные» виды деятельности строятся на системе вложенных навыков: чтобы применить узкоспециализированные умения (например, решение конкретных задач по шаблону), нужно располагать широким слоем базовых компетенций и уметь «соединять» разные области знаний, гибко использовать контекст и понимать скрытые зависимости.
Алгоритмы вроде LLM уверенно справляются с тестовыми заданиями и демонстрируют качества, которые внешне напоминают человеческий интеллект (логика, творчество, генерация текстов). Однако в реальной работе требуются сразу несколько разных слоёв навыков — от общих коммуникативных и аналитических умений до конкретных профессиональных тонкостей.
• Тесты обычно проверяют лишь часть такого спектра.
• Тогда как в профессии важна совокупная, увязанная деятельность: умение оценивать риски, вести переговоры, выстраивать отношения в коллективе, отвечать за результаты, работать в неопределённых или стрессовых условиях и т. д.
Именно поэтому системы, демонстрирующие результат «на уровне людей» на тестах (узкая верхушка специализированных компетенций), пока не вытесняют специалистов, у которых в реальной практике задействуются фундаментальные «вложенные» компетенции.
Эти более широкие навыки редко поддаются формальному описанию и тестированию и, согласно выводам авторов, крайне важны для карьерного роста и высокого дохода.
Более того, без сочетания разнообразных «общих» умений и их непрерывного совершенствования продвинутые (специфические) навыки не дают полного эффекта.
Всё это сильно усложняет и отдаляет перспективу массовой замены человека на должностях, требующих комплексного «человеческого» подхода.
#LLMvsHomo
_______
Источник | #theworldisnoteasy
Telegram
Малоизвестное интересное
Нас не заменят
Найдено обоснование «парадокса Дедала для ИИ»
✔️ Дан ответ на вопрос стоимостью триллионы долларов.
✔️ Оказывается, сила нашего разума далеко не только в высоком интеллектуальном уровне отдельных способностей и умений, а в их комплексности…
Найдено обоснование «парадокса Дедала для ИИ»
✔️ Дан ответ на вопрос стоимостью триллионы долларов.
✔️ Оказывается, сила нашего разума далеко не только в высоком интеллектуальном уровне отдельных способностей и умений, а в их комплексности…
ИИ читает спикера за секунды, угадывая успех выступления по первым фразам.
Модели GPT и Gemini оценивают научный доклад уже после 15–60 слов — и попадают в точку.
До сих пор сверхвозможности больших языковых моделей мы видели в «текстовом океане» — когда нужно осмыслить миллиарды слов. Новая работа Michigan State University показала, что те же модели не менее точны в микромире: по первым двум-трем предложениям (≈ 1-5 % текста, меньше полуминуты речи) они с корреляцией 0,7 предсказывают, как доклад оценят живые эксперты.
Иными словами, ИИ выхватывает те самые сигналы, по которым мы подсознательно решаем: «слушать дальше или переключиться». Это приближает к эмпирической проверке популярного «7-second rule» Роджера Айлза (авторы уточняют: точное число секунд условно) - популярный постулат о публичных выступлениях, ораторском мастерстве и деловом общении:
Эти семь секунд включают момент выхода на сцену, первые слова, мимику, контакт глаз, позу и темп голоса - т.е. касаются в основном невербальной коммуникации. Авторы новой работы перенесли этот подход на вербальную коммуникацию, опираясь прежде всего на классическую «тонко-ломтевую» (thin-slice) линию исследований, начатую в 1990-е Натали Амбади и Робертом Розенталем (их эксперименты показали, что по 30-секундным беззвучным отрывкам можно с высокой точностью предсказывать оценки преподавателей студентами).
С тех пор на основе “тонких срезов” вырос целый корпус работ. Например:
• «speed-dating»: по нескольким секундам общения оценивали перспективу отношений
• микроданные невербального поведения на собеседованиях
• сигналы эмоций через невербальные каналы
• восприятие харизмы только по голосу (и шире - по акустике речи)
• мгновенные решения о доверии и компетентности по выражению лица
• как впечатления о спикере влияют на восприятие самого контента
Всё это - фундамент доказательства, что крошечные отрывки поведения и речи несут достаточную информацию о навыках, эмоциях и чертах личности.
Но лишь революция ChatGPT позволила применить подобный подход в языково-текстовом микромире (где нет ни голоса, ни внешности, а есть только стенограмма).
Как это делали:
• 128 докладов,
• 2 модели GPT-4o-mini и Gemini 1.5
• срезы размером 1-75 % текста стенограмм
• оценки моделей сравнивали с 60 экспертами - людьми
Что из этого следует для нас?
1) Золотое правило «зацепи аудиторию в первую минуту» получило эмпирическое подтверждение: если первые фразы скучны, дальше уже поздно спасать ситуацию.
2) LLM открывают дорогу к молниеносной, практически бесплатной обратной связи для преподавателей, политиков, учёных и всех, кому важно говорить убедительно. Соединяя идеи «тонких срезов» и возможности ИИ, мы получаем масштабируемый, надёжный и валидный инструмент, который поможет прокачивать публичные выступления и доводить их восприятие аудиторией до максимума (в пределах харизмы спикера).
3) А уж какая лафа ожидается в деловом общении с использованием презентаций и иных публичных выступлений (для клиентов, партнеров, инвесторов …)!
Вангую: очень скоро к LLM-анализу «тонких срезов» стенограмм добавится анализ тонких срезов аудио и видео выступлений (т.е. мультимедийный синтез всех каналов вербальной и невербальной коммуникации).
И тогда ИИ станет незаменимым инструментом для политтехнологов, спичрайтеров и имиджмейкеров.
А уж из совсем крышесносных перспектив - преодоление несжимаемости эволюционного опыта Homo sapiens.
#ВовлечениеАудитории #ИнтеллектуальнаяПродуктивность #LLMvsHomo
_______
Источник | #theworldisnoteasy
Модели GPT и Gemini оценивают научный доклад уже после 15–60 слов — и попадают в точку.
До сих пор сверхвозможности больших языковых моделей мы видели в «текстовом океане» — когда нужно осмыслить миллиарды слов. Новая работа Michigan State University показала, что те же модели не менее точны в микромире: по первым двум-трем предложениям (≈ 1-5 % текста, меньше полуминуты речи) они с корреляцией 0,7 предсказывают, как доклад оценят живые эксперты.
Иными словами, ИИ выхватывает те самые сигналы, по которым мы подсознательно решаем: «слушать дальше или переключиться». Это приближает к эмпирической проверке популярного «7-second rule» Роджера Айлза (авторы уточняют: точное число секунд условно) - популярный постулат о публичных выступлениях, ораторском мастерстве и деловом общении:
«Слушатели (или собеседники) составляют первичное и часто стойкое мнение о спикере за первые семь секунд после его появления».
Эти семь секунд включают момент выхода на сцену, первые слова, мимику, контакт глаз, позу и темп голоса - т.е. касаются в основном невербальной коммуникации. Авторы новой работы перенесли этот подход на вербальную коммуникацию, опираясь прежде всего на классическую «тонко-ломтевую» (thin-slice) линию исследований, начатую в 1990-е Натали Амбади и Робертом Розенталем (их эксперименты показали, что по 30-секундным беззвучным отрывкам можно с высокой точностью предсказывать оценки преподавателей студентами).
С тех пор на основе “тонких срезов” вырос целый корпус работ. Например:
• «speed-dating»: по нескольким секундам общения оценивали перспективу отношений
• микроданные невербального поведения на собеседованиях
• сигналы эмоций через невербальные каналы
• восприятие харизмы только по голосу (и шире - по акустике речи)
• мгновенные решения о доверии и компетентности по выражению лица
• как впечатления о спикере влияют на восприятие самого контента
Всё это - фундамент доказательства, что крошечные отрывки поведения и речи несут достаточную информацию о навыках, эмоциях и чертах личности.
Но лишь революция ChatGPT позволила применить подобный подход в языково-текстовом микромире (где нет ни голоса, ни внешности, а есть только стенограмма).
Как это делали:
• 128 докладов,
• 2 модели GPT-4o-mini и Gemini 1.5
• срезы размером 1-75 % текста стенограмм
• оценки моделей сравнивали с 60 экспертами - людьми
Что из этого следует для нас?
1) Золотое правило «зацепи аудиторию в первую минуту» получило эмпирическое подтверждение: если первые фразы скучны, дальше уже поздно спасать ситуацию.
2) LLM открывают дорогу к молниеносной, практически бесплатной обратной связи для преподавателей, политиков, учёных и всех, кому важно говорить убедительно. Соединяя идеи «тонких срезов» и возможности ИИ, мы получаем масштабируемый, надёжный и валидный инструмент, который поможет прокачивать публичные выступления и доводить их восприятие аудиторией до максимума (в пределах харизмы спикера).
3) А уж какая лафа ожидается в деловом общении с использованием презентаций и иных публичных выступлений (для клиентов, партнеров, инвесторов …)!
Вангую: очень скоро к LLM-анализу «тонких срезов» стенограмм добавится анализ тонких срезов аудио и видео выступлений (т.е. мультимедийный синтез всех каналов вербальной и невербальной коммуникации).
И тогда ИИ станет незаменимым инструментом для политтехнологов, спичрайтеров и имиджмейкеров.
А уж из совсем крышесносных перспектив - преодоление несжимаемости эволюционного опыта Homo sapiens.
#ВовлечениеАудитории #ИнтеллектуальнаяПродуктивность #LLMvsHomo
_______
Источник | #theworldisnoteasy
Telegram
Малоизвестное интересное
ИИ читает спикера за секунды, угадывая успех выступления по первым фразам.
Модели GPT и Gemini оценивают научный доклад уже после 15–60 слов — и попадают в точку.
До сих пор сверхвозможности больших языковых моделей мы видели в «текстовом океане» — когда…
Модели GPT и Gemini оценивают научный доклад уже после 15–60 слов — и попадают в точку.
До сих пор сверхвозможности больших языковых моделей мы видели в «текстовом океане» — когда…