FSCP
17.2K subscribers
30.6K photos
3.56K videos
863 files
78K links
another filter bubble канал изначально созданный несколькими друзьями чтобы делиться копипастой, иногда оценочным суждением

технологии, деньги, социум

редакция @id9QGq_bot
реклама @johneditor
в будущее возьмут не всех
выводы самостоятельно

мир меняется
Download Telegram
Найден способ заражать выродков - открыто недостающее звено в технологии создания социо-биологического оружия.

Сценаристы превосходного сериала «Черное зеркало» пока не догадались экранизировать вынесенный в заголовок футуро-кошмар. А ведь до возможностей его материализации немногим дальше, чем до массовых самоуправляемых авто.
Прорывной потенциал только что опубликованной в Royal Society Open Science работы троих испанских исследователей «Mixing and diffusion in a two-type population» видится мне колоссальным.

Результаты этого исследования, будучи доведенными до уровня технологии, позволят запускать сетевые ментальные (например, пропагандистские) эпидемии, не ослабляющие свой вирусный эффект из-за наличия в сети невосприимчивых к социальной заразе «инакомыслящих».

Получится что-то типа Башен-излучателей из экранизированного Бондарчуком романа Стругацких «Обитаемый остров». Только здорово усовершенствованных Башен. Так, чтобы даже «выродки» (те, на кого излучение/пропаганда не действует) не могли избежать влияния «излучения», отравляющего сознание пропагандой (и не важно какой: политической, коммерческой, моральной …)

Как это все может работать, что уже научились делать, что нового открыли испанцы и куда ведет этот техно-кошмар, я написал в своем новом посте на 9 мин. чтения
https://goo.gl/kbrmdc

#Инфокаскады #СоциальныеСети #СоциальноеЗаражение #Инакомыслящие
Найден оптимальный алгоритм выявления «скрытых пружин» в устройстве общества.

На основе данных о коммуникации людей в любой социальной сети (онлайновой, типа ФБ, или офлайновой – в реальной жизни) можно выявить скрытую иерархическую структуру среди участников сетевых коммуникаций. Это делается путем анализа асимметричных моделей взаимодействий участников.
Подобные иерархии существуют в любых социальных группах: от птиц, приматов и слонов до людей. Все эти группы организованы в соответствии с иерархиями доминирования, определяющими модели повторяющихся взаимодействий, при которых доминирующие особи склонны утверждать себя над менее влиятельными членами групп.

Чем больше и сложнее сеть участников социальных взаимодействий, тем больше в нем скрытых иерархий, порою неведомых самим участникам коммуникаций.
Выявление архитектуры таких иерархий – критически важная задача для:
- понимания характера существующих и предсказания возникновения новых иерархий;
- увязки этих иерархий со «струями и течениями» социальных взаимодействий;
- оказания влияния на них в целях управления динамикой социальных коммуникаций.
Т.е. в наше время, - это важнейшая задача для социологов, политтехнологов, спецслужб и СМИ.

Поскольку задача столь важная, то для ее решения уже разработаны несколько подходов, в каждом из которых построено по несколько типов алгоритмических моделей и, соответственно, алгоритмов выявления иерархий.
Алгоритмов много, но их производительность и масштабирование до последнего времени оставляли желать лучшего.

Новая прорывная модель и алгоритм SpringRank навеяны элементарной физической аналогией – представить социальную сеть коммуникаций, как физическую систему, в которой между каждой парой участников натянута ориентированная пружина определенной длины и упругости.
Гениальная идея нового алгоритма - минимизировать общую энергию всех пружин системы. И поскольку эта задача оптимизации требует только линейной алгебры, ее можно решить для сетей с миллионами узлов и ребер за считанные секунды.


Натурные испытания алгоритма SpringRank на синтетических и реальных наборах данных (включая данные о поведении животных, найме преподавателей, сетях социальной поддержки и спортивных турнирах) показали замечательные результаты – алгоритм жутко эффективен, как по скорости, так и по масштабируемости.

Он также может выявлять и предсказывать появление ненаблюдаемых ребер в сети, - так сказать выявлять «скрытые пружины», влияющие на поведение общества.

Принципиальное преимущество SpringRank перед прежними алгоритмами в том, что
- старые алгоритмы, как правило, лишь «выявляют элиту» - дают высокие ранги небольшому числу важных узлов, что дает мало информации об иерархии узлов с более низким рейтингом;
- новый алгоритм выявляет всю многоуровневую иерархию, - и в том числе, латентную: неявную, скрытую и неочевидную.

Новый алгоритм, возможно, произведет революцию в т.н. «системах одобрения» (Systems of Endorsement ), в которых статус участников обусловлен престижем, репутацией или социальным положением.
К ним, в той или иной мере, относится почти все: от рекомендательных систем в Интернете, до социального устройства общества.

Подробней см. только что опубликованную работу «A physical model for efficient ranking in networks» https://advances.sciencemag.org/content/4/7/eaar8260

#СоциальныеСети #СоциальнаяИерархия #МоделиАлгоритмы
​​Юрий Сапрыкин, говоря вчера, что ”Фейсбук — удивительная машина сбивания в стада”, просто делился своим «особым мнении». Но по сути, он резюмировал выводы нового интереснейшего исследования «Communication in Online Social Networks Fosters Cultural Isolation», совместно выполненного Департаментом социологии Университета Гронингена и Межуниверситетским центром теории и методологии социальных наук Нидерландов.
Речь, естественно, не только о Фейсбуке, а о всех крупных соцсетях.
Согласно проведенному исследованию:
✔️ Социальные сети породили одну из ключевых социальных проблем 21 века — они сбивают людей в стада, увеличивая поляризацию и раскол и катализируя нарастающий в мире трайбализм.
✔️ Кроме этого, социальные сети поставили немыслимую еще совсем недавно антропологическую проблему — появление нового вида Homo Retis, способного повернуть вспять многотысячелетний вектор эволюции интеллекта человека.

Полная версия статьи:
на Medium
на Яндекс Дзен
Время чтения до 4 мин.
#Эволюция #СоциальныеСети #Раскол
Мир раскалывается на все более мелкие части.
Это неумолимое следствие цифровизации социальных взаимодействий.

Задолго до переноса сознания отдельного человека в глобальную цифровую среду, уже вовсю идет перенос в эту среду сознания общества
Лет через 300 напишут, что в 21 веке человечество пережило тектоническую трансформацию, положившую начало разделению Homo sapiens на новые виды. И что этот процесс был запущен на много десятилетий раньше прорыва в объединении инфотеха и биотеха, приведшего к образованию киборгов, а потом и к оцифровке сознания. И что спусковым крючком 1го этапа тектонической трансформации стало лавинообразное перенесение социальных взаимодействий людей в глобальную инфосеть, называвшуюся тогда Интернет.

Так напишут через 300 лет. А что сейчас?
Да и сейчас уже многие понимают, что соцсети на глазах меняют мир. Журналисты и политики, ученые и военные, медиа-индустрия и маркетинг - все констатируют колоссальный рост влияния соцсетей.
Но в чем это выражается в целом для всего общества, а не для прагматики конкретных областей человеческой деятельности, мало кто задумывается.

О том, что соцсети – это мощнейшие катализаторы раскола в обществе, пишу уже несколько лет. Это явление коренится в сложной структуре и динамике социальных систем. Homo sapiens по своей природе не способен к почти мгновенным социальным взаимодействиям с миллионами людей, да еще и при такой колоссальной пропускной способности инфопотоков между ними.
Людям нужен механизм адаптации при таком переносе «нервной системы» их социальных взаимодействий в цифровую глобальную среду. Ведь по сути, еще задолго до переноса сознания отдельного человека в глобальную цифровую среду, уже вовсю идет перенос в эту среду сознания общества. Чтобы адаптироваться к этому, общество задействует все имеющиеся у него механизмы адаптации.
И главным таким, проверенным тысячелетиями механизмом, стал раскол.

Люди самоорганизуются в группы разных масштабов: от семей до городов и культур, от френдов и единомышленников до блоков, партий и наций. И этот процесс совсем не нов. Так было в социальных сетях человечества уже много веков и даже тысячелетий. Потребовалось даже «пришествие Больших Богов», чтобы противодействовать тренду раскола, мешающего масштабированию кооперации людей.

Что же изменилось?
Количество перешло в качество. Взрывной рост масштаба, скорости и пропускной способности социальных взаимодействий сметает все: от веры в Больших Богов до национальной идентичности. Разнообразие людей (гендерное, расовое, мировоззренческое и т.д.) катализируется ростом скоростей, масштабов и объемов инфопотоков. А сложная структура и динамика социальных систем переводит этот нелинейный процесс в новые непредсказуемые качества.
- Раскол порождает новые качества социальных взаимодействий.
- Люди вынуждены к этому адаптироваться, приспосабливаться.
- Необходимость приспособления к кардинально поменявшейся среде в течение десятка поколений, вполне возможно, окажется способной положить основу для разделения Homo sapiens на новые виды.

Пониманию механизмов, приводящих к возникновению многомасштабной фрагментации в гиперсвязанных социальных системах, и конкретному кейсу раскола, происходящего в США посвящен новый интереснейший отчет Института сложных систем Новой Англии (NECSI), опубликованный вчера в Журнале Королевского научного общества «U.S. Social Fragmentation at Multiple Scales».
https://necsi.edu/us-social-fragmentation-at-multiple-scales

#Раскол #СоциальныеСети #США
​​Три разных России повышают градус хейта
Зашкаливающий уровень хейта в российских социальных сетях – результат сегрегации общества на клики и рост поляризации позиций каждой из клик.
В этой связи весьма важны 3 вопроса.
1) Можно ли на конкретных примерах видеть сегрегацию и поляризацию сетевой аудитории?
2) Почему это происходит?
3) Как это можно, если не остановить, то хотя бы тормозить?


Для ответа на 1й вопрос, я провел эксперимент, сравнив результаты публикации постов на своем ТГ-канале «Малоизвестное интересное» и двух его зеркалах: в Facebook и Яндекс Дзен.
Меня интересовало, насколько разнятся интересы аудиторий моего канала в ТГ, Facebook и Яндекс Дзен. Ведь при наличии одинакового контента и примерно одинаковой численности аудиторий канала на разных площадках, отличие в числе дочитываний говорит о степени различий в интересах аудиторий (а это один из ключевых признаков сегрегации по интересам).
Уровень же этих различий может служить прокси поляризации мега-клик – аудиторий платформ: ТГ, Facebook и Яндекс Дзен.
Число дочитываний – удобный прокси: в ТГ и Яндекс Дзен этот показатель считается автоматом, а в Facebook не сложно прикинуть его значение вручную по числу лайков и разшариваний, уточив по числу переходов из Facebook в Medium, где публиковались большие посты зеркала канала в Facebook.

Выводы таковы
✔️ Сегрегация по интересам у трех площадок весьма большая.
✔️ Поляризация мнений аудиторий по отношению к темам постов также весьма большая.

Проиллюстрирую эти выводы на трех постах с хитро подобранными темами, смысл которых:
A. «Трудности искусственного интеллекта»
B. «Китайская угроза»
C. «Закат США»

Результаты по числу дочитываний.

ТГ – «Даешь про китайскую угрозу!»
В 28,1К
А 14,4К
С 5,5К

Facebook - «Даешь про ИИ!»
А 10,2К
С 1,7К
В 1,3К

Яндекс Дзен - «Даешь про закат США!»
С 13,9К
А 1,5К
В 156

Поляризация (степень различий) – 2 порядка по числу дочитываний.

Таковы результаты тестирования сегрегации и поляризации сетевой аудитории канала.

Теперь о вопросе - почему это происходит.
Короткий ответ: потому что социальные сети (и мессенджеры) – акселераторы сегрегации и поляризации общества. Убедительнейшая аргументация здесь.

Теперь вопрос - как это можно, если не остановить, то хотя бы тормозить.
Короткий ответ там же: поскольку отказаться от соцсетей и мессенджеров практически нереально, нужно менять организацию их работы.
1) Убрать возможность отфрендить или как-то иначе отписаться от конкретного человека или канала. Подписался на кого-то – терпи в своей ленте.
2) Убрать как класс – «лидеров мнений». Нельзя людям видеть число их подписчиков/фоловеров. Сделать такое можно – было бы желание.

Если же ничего такого не предпринимать, сегрегация и поляризация доведут-таки градус хейта до смертоубийственного. И не только в онлайне.
#СоциальныеСети #Раскол
Шизоиды ЁБа.
«Козлы» и «Рыцари» скрестили Интернет со средневековьем.

Когда в 1969 King Crimson спели «Шизоид 21-го века», никто не знал, что это про ЁБ.
ЁБ – это русская фонетическая транскрипция IoB (аббревиатура «Internet Of Beefs» (Интернет ругани)). И если сокращение IoB ближе к сетевой терминологии (аля IoT), то русское ЁБ – наиболее релевантно сути. Об этом Венкатеш Рао из Института Берггрюена вчера опубликовал финальную версию эссе.

Очень интересно. А для тех, у кого мало времени, даю резюме.
1. ЁБ - это медиапространство, где доминируют ярые приверженцы ругани. Те, кто считают любые высказывания, отличающееся от безоговорочного согласия и поддержки их мнения, признаком неуважения и провокацией к конфликту. Они сфокусированы только на ругани. В каждом сетевом взаимодействии они видят войну за территорию. При контакте с ними, ваш единственный выбор - спорить или слиться, отказавшись от ЁБа.
2. ЁБ существует на всех платформах. Это децентрализованная, самодостаточная машина конфликтов, мотивирующая участников делать самые разные вещи с единственной целью – чтобы ЁБ крепчал.
3. Технология ЁБа - это технология натравливания толп друг на друга. За каждым конфликтом стоит шкурный интерес каких-то «Рыцарей». Рыцари – это большие люди, знаменитости, уже добившиеся успеха и известности. У них есть свои последователи. Их социальный статус - часть их карьеры. Они остаются на вершине за счет непрекращающейся ругани с другими рыцарями. Вы наверняка знаете их имена.
4. Семантическая структура ЁБа сформирована громкими спорами между харизматичными рыцарями -, слабо связанными с сообществами, населенными добровольными армиями их приверженцев. Подавляющая часть энергии конфликта заключается в том, что взаимозаменяемые приверженцы противостоят друг другу по линиям, обозначенным рыцарями, откуда они ведут бесконечный срач в бесчисленных битвах на просторах ЁБа.
5. Конфликт на ЁБ не регулируется какой-либо стратегией или идеологическими доктринами. Это взбаламученный гоббсовский конфликт общества чести с феодальной структурой, в основе которого лежит анонимная, взаимозаменяемая, злая фигура, отчаянно пытающаяся выглядеть значимой: «козёл» - представитель массовки соцсетей.
6. Что заставляет козла быть козлом? Страстное желание произвести впечатление на рыцарей, с которыми они согласны. Для козла нет большей чести, чем быть замеченным рыцарями, за которых они сражаются. В результате верность козла - это валюта экономики ЁБа.
7. Главная задача рыцарей – мобилизация своих козлов на битву с чужими. Лучшие рыцари ЁБа, такие как Трамп, руководствуются полностью реактивной философией: «Вот мои козлы; я должен выяснить, куда они идут, чтобы выйти вперед и повести их за собой». Для рыцарей особо ценны культурные конфликты на основе ругани, которую за них ведут козлы. Для козла конфликт - средство достижения цели, хотя и бессвязное. Для рыцаря конфликт - это инструмент. Поддержание его в рабочем состоянии - это основа бизнес-модели повышения репутации и культурного капитала. Одержав победу в битве, рыцари увеличивают число своих козлов. Чем больше козлов поддерживает рыцаря в стабильном состоянии боевой готовности, тем крупнее он игрок на ЁБе.
8. Типичная позиция рыцарей ЁБа - козлы не важны и их не жалко. Рыцари не несут ответственности за то, что делают козлы, и не несут ответственности за взгляды козлов, сражающихся под их знаменами.
9. В результате на ЁБе единственная значимая транзакция - это масштабная битва между армиями козлов - эквивалент инфокаскада или инфопандемии. Чем кровавее и глупее, тем лучше для подстрекательства рыцарей со всех сторон.
10. С ростом поляризации в обществе, конфликты на ЁБе имеют тенденцию институционализироваться, производя закаленных воинов, которые строят свою карьеру на сохранении и усугублении проблем общества.
#раскол #социальныесети
Непротивление злу насилием в социальных медиа опасно для общества.
Экспериментально проверен «закон ненависти в соцсетях».

Число новых потрясающих исследований по этой теме – двузначное. Их чрезвычайно важные результаты – весьма объемные и содержат массу интересных деталей. Но я попробую изложить тему по «методу Пивоварова» - «максимально субъективно, по возможности, внятно и коротко (у вас мало времени, мы это ценим) … поехали».
ДАНО
▪️ За 10 лет отношения в обществе кардинально изменились из-за взрывного роста роли социальных медиа и резкого скачка хейта и поляризации в них.
▪️ Отменить соцмедиа невозможно, но хейт и поляризацию нужно как-то гасить (ибо уже зашкаливают, и это ставит общество на грань социальных катаклизмов).
▪️ Исследования показывают, что рост хейта и поляризации, в значительной мере, - результат целенаправленной деятельности: (1) всевозможных «фабрик троллей» и (2) тучи индивидуальных приверженцев ругани, считающих любые высказывания, отличающиеся от безоговорочного согласия и поддержки их мнения, признаком неуважения и провокацией к конфликту.
▪️ Общими усилиями «фабрики троллей» и индивидуальные приверженцы ругани превращают Интернет в «Internet Of Beefs» (Интернет ругани)), плодя ненависть, травлю и манипуляции дискурсом.
ПОСТАНОВКА ЗАДАЧИ
1. Какая индивидуальная стратегия для каждого из нас оптимальна, при столкновении с троллями и хейтерами всех мастей?
2. Как общество может противодействовать росту хейта и поляризации в соцмедиа?
КАК РЕШАЛИ ЗАДАЧУ
▪️ На основе анализа 200 млн слов, статей и комментариев, опубликованных на 29 правых интернет-порталах, составили детальный классификатор «языка вражды и оскорблений» и его диалектов (а) ненависти, (б) провокаций и (в) тирад разглагольствования, используемых троллями и индивидуальными приверженцами ругани.
▪️ Научили ИИ-алгоритм автоматом распознавать (1) ненависть и провокацию конфликтов и (2) организованное противодействие провокаторам – троллям и индивидуальными хейтерам (второе оказалось куда сложнее первого из-за разнообразия языковых форм выражения)
▪️ Проверили и подправили классификатор и ИИ-алгоритм, подключив к их проверке и переобучению краудсорсеров через платформу Crowdworking Mechanical Turk.
▪️ Запустили ИИ-алгоритм для обработки и анализа 200 тыс. диалоговых цепочек в Twitter.
РЕЗУЛЬТАТ
✔️ Общество может остановить рост хейта и поляризации в соцмедиа лишь путем организованного противодействия (только в тех диалоговых цепочках где оно было, тролли и хейтеры слились)
✔️ Оптимальная индивидуальная стратегия – не банить троллей и хейтеров, а давать им бой, организуя своих сторонников.

ОБЩИЙ ПРИНЦИПИАЛЬНЫЙ ВЫВОД - «закон ненависти в соцсетях»
• Современная медиасреда принципиально изменила способы социальных коммуникаций.
• В медиасреде тактика отфрендить или забанить позволяет «не видеть зло» вместо того, чтобы «бороться за добро», создавая каждому комфортные эхо-камеры.
• В результате такого «непротивления злу насилием», в медиасреде, трансформируемой троллями и хейтерами в Интернет ругани, начинает царить ненависть.
• Не позволить Интернету ругани переродиться в Интернет ненависти способно лишь организованное противодействие.

Подробней:
- популярно – New study shows effectiveness of counter-speech online
- доклад 22го октября на ScienceWriters2020 Vitriol and disinformation: math and big data illuminate the dark world of online speech. Can journalism compete?
- исследование 1 Countering hate on social media: Large scale classification of hate and counter speech
- исследование 2 Impact and dynamics of hate and counter speech online
- рассказ лингвиста Иоахима Шарлот о «языке вражды и оскорблений»

См. также мои посты по тэгам:
#СоциальныеСети #Polarization #Раскол
_______
Источник: https://t.iss.one/theworldisnoteasy/1151
Гипотеза о том, что Интернет приведет к разделу человечества на два новых вида, получает все новые подтверждения. Но главное, — становится понятно, где и почему формируется граница разлома. Разлом проходит по способности людей различать истину в новой инфосреде человечества, формирующейся на наших глазах — среде социальных медиа.

Источник разлома – когнитивный стиль человека: рефлексивный (аналитический) или интуитивный.

Исследования, подтверждающие связку между триадой - размер социальной сети индивида, умение «читать мысли» других и объем орбитальной префронтальной коры, - уже проведены. Они доказывают, что самые активные инфлюенсеры социальных медиа имеют специфические отличия в мозге.

Теперь ждем аналогичных исследований, доказывающих отличия устройства мозга людей интуитивного и аналитического когнитивных стилей, - и здравствуй алгокогнитивная евгеника.

Об этом мой новый пост (на 4 мин)
- на Medium https://bit.do/fNGus
- на Яндекс Дзен https://clck.ru/TJ4WD
#Культура #СоциальныеСети #СоциальныеМедиа
_______
Источник: https://t.iss.one/theworldisnoteasy/1226
​​Без смены бизнес-модели соцсетей любая демократия скатится к диктатуре.
Это следствие социосетевого хейта, искривляющего пространство субъективной реальности.

Крайняя поляризация взглядов отрезает путь к их сближению и ведет лишь к конфликтам. Увы, но в этом смысле мы мало чем отличаемся от шимпанзе. Но это полбеды. А беда в том, что крайняя поляризация взглядов неотвратимо рушит любую демократию.
Демократии требуют компромисса. Но он становится практически невозможным, когда общество разделено на диаметрально противоположные лагеря. Опасность в том, что в такой конфигурации общества: нетерпимость лишь растет, демократические нормы приходят в упадок, а властная группировка идет на все, чтобы не позволить противникам когда-либо прийти во власть. Именно это и наблюдается (за редким исключением) во всем мире.

Новое исследование 3х универов США на предельно простой и элегантной (и потому весьма привлекательной) модели – всего два параметра (толерантность и реактивность коммуникаций), - получило убийственный вывод (1).
При уровне толерантности ниже 0,5 (что довольно типично для развитых стран), если давать людям все больше и шире активно общаться (соцсети – идеальные площадки) – дело неотвратимо кончится тотальной сварой, т.е. произойдет предельная поляризация, когда обе группы сочтут других нелюдями (со всеми вытекающими).

О механизмах того, почему и как это происходит, я уже не раз писал.
• Бизнес–модель соцсетей питается социосетевым хейтом, способствующим инфодемиям ненависти (2)
• Инфодемии ведут к искривлению инфопространства субъективной реальности участников соцсетей, что меняет сетевую топологию, определяющую инфопотоки, от которых зависят принимаемые людьми решения (3)
• В искривленном инфопространстве соцсетей происходит «скатывание» центристов на края, превращая их в ультракрайних (4).
Остановить это может только радикальная реформа платформ социальных сетей, о чем я писал в «Детокс Фэйсбука возможен. Он оздоровит общество и уменьшит раскол» (5)

На приложенном рисунке из нового исследования видно:
✔️ Сколь лавинообразно скатывание в раскол при уровне толерантности 0,25-0,45 (ось X)
✔️ Как по-южному быстро восходит поляризация (переход общества в желтый цвет раскола) при росте реактивности коммуникаций (ось Y), вовлекая в раскол все более толерантных (от чего спасает лишь толерантность > 0,75, а где такую найдешь кроме Северной Кореи, - впрочем, у нас всё впереди).
#СоциальныеСети #Раскол #Polarization #Толерантность #Соцсети

Ссылки:
1 2 3 4 5
_______
Источник | #theworldisnoteasy
В цифровых мирах неравенство можно уменьшить.
Эффект Матфея ослабляется переключением пользователей с Системы 1 на Систему 2.

Оказалось, что помимо пресловутого «закона Матфея», наше внимание к контенту социальных медиа и его оценка сильнейшим образом зависят от того, какой системой обработки информации мы воспринимаем контент.

Только опубликованные результаты исследования MIT Sloan экспериментально подтверждают, насколько сильно алгоритмы соцсетей (и прочие соцмедиа) искажают для людей картину мира.
А именно:
• насколько в соцсетях силен закон Матфея «богатые становятся богаче» (в смысле роста популярности авторов контента, получающего тем большее внимание и выше оценку, чем больше уже имеющаяся популярность его автора – лайки улучшают репутацию, а репутация повышает число новых лайков);
• насколько неравенство в предвзятой оценке социального контента влияет на увеличение алгоритмами его рейтингов популярности.

И то, и другое давно обсуждается, но прямые доказательства экспериментально получены впервые. Степень влияния персоны автора контента на его оценку читателем огромна – она превосходит значимость самого контента и доходит до 61%.
Но это еще не все результаты исследования.
Выяснилось следующее.

Указание авторства контента также заставляет читателей почти мгновенно, интуитивно, «в автоматическом режиме» оценивать контент (автор известный - лайк; неизвестный – поехали дальше).
Так почти рефлекторно у читателя работает Система 1 (по Канеману). А до работы Системы 2 (требующей привлечения нашего внимания содержательными аспектами контента и определенных сознательных умственных «затрат» на логический выбор и концентрацию), при виде имени популярного автора дело просто не доходит.

И вот тут-то и кроется шанс на улучшение алгоритмов.
Авторы показывают, - если небольшое случайное подмножество сообщений отображать анонимно, то неискаженные предвзятостью их оценки читателями были бы относительно беспристрастным сигналом, который алгоритм ранжирования мог бы использовать для смягчения эффектов идентичности/популярности, не прибегая к тотальной анонимности контента, невозможной из практических соображений.

Т.е. шанс исправить алгоритмы соцсетей есть.
Только «съесть-то он съест, да кто ж ему даст?!»

FYI: По тегам этого поста в моем канале написано немало
#СоциальныеСети #Соцсети #КогнитивныеИскажения #Неравенство
_______
Источник | #theworldisnoteasy