DevOps Labdon
460 subscribers
24 photos
3 videos
2 files
713 links
👑 DevOps Labdon

حمایت مالی:
https://www.coffeete.ir/mrbardia72

ادمین:
@mrbardia72
Download Telegram
🔵 عنوان مقاله
Grafana k8s-monitoring-helm: Scalable Observability Stack for Kubernetes

🟢 خلاصه مقاله:
این مقاله یک راهکار یکپارچه و مقیاس‌پذیر برای مشاهده‌پذیری Kubernetes با استفاده از Helm معرفی می‌کند که به‌صورت یک چارت، استقرار نظارت جامع شامل metrics، logs و traces را ساده می‌سازد. اجزای کلیدی آن شامل جمع‌آوری metrics سازگار با Prometheus، تجمیع logs با Loki و agents سبک مثل Promtail یا Grafana Agent، پشتیبانی از traces با Tempo و OpenTelemetry، و نمایش و هشداردهی از طریق Grafana است. این چارت با کشف خودکار سرویس‌ها، داشبوردهای آماده، قوانین هشدار، و گزینه‌های مقیاس‌پذیری (sharding، remote_write، و تنظیمات retention/limits) امکان بهره‌برداری در خوشه‌های بزرگ را فراهم می‌کند. امنیت و پایداری با RBAC، TLS، مدیریت Secrets، NetworkPolicy و پشتیبانی از persistence و GitOps (مانند Argo CD و Flux) پوشش داده می‌شود. هدف، ارائه مسیر سریع و قابل اتکا برای استقرار مشاهده‌پذیری در Kubernetes است؛ چه در مدل خودمیزبان و چه با اتصال به Grafana Cloud، همراه با قابلیت شخصی‌سازی داشبوردها و سیاست‌های مقیاس‌پذیری.

#Kubernetes #Grafana #Helm #Observability #Prometheus #Loki #OpenTelemetry #DevOps

🟣لینک مقاله:
https://ku.bz/G5l3N6Pcw


👑 @DevOps_Labdon
1
🔵 عنوان مقاله
Troubleshooting packet drops in a Kubernetes-based observability platform

🟢 خلاصه مقاله:
** این مطالعهٔ موردی نشان می‌دهد تیم SRE در Kapital Bank چگونه افت‌های گهگاهی کارایی در یک پلتفرم observability مبتنی بر Kubernetes را که به Memcached متکی بود ریشه‌یابی کرد. آن‌ها با همبسته‌سازی سیگنال‌ها در سطح Kubernetes و شواهد کرنل لینوکس، مشکل را به دراپ بسته‌ها در مسیر شبکهٔ کرنل تحت الگوهای بار خاص محدود کردند. جمع‌بندی این بود که برخی مقادیر پیش‌فرض کرنل برای الگوهای اتصال پرتراکم و پرتلاطم در محیط‌های کانتینری مناسب نیست و باعث فشار روی صف‌ها و بافرهای شبکه می‌شود. با تنظیم دقیق پارامترهای کرنل و اعتبارسنجی تدریجی تغییرات روی نودهای میزبان Memcached، نرخ دراپ بسته‌ها کاهش یافت و پایداری و پیش‌بینی‌پذیری کارایی بهبود پیدا کرد. نتیجهٔ عملی: به مسائل کارایی به‌صورت میان‌لایه‌ای نگاه کنید، قبل و بعد از تغییرات اندازه‌گیری کنید، و تنظیمات ایمن کرنل را در ران‌بوک‌ها مستند سازید.

#Kubernetes #SRE #Observability #Memcached #LinuxKernel #Networking #DevOps #PerformanceTuning

🟣لینک مقاله:
https://ku.bz/spNnnpsM-


👑 @DevOps_Labdon
🔵 عنوان مقاله
Platform engineering toolkit for Kubernetes

🟢 خلاصه مقاله:
این جعبه‌ابزار مهندسی پلتفرم برای Kubernetes مسیرهای استاندارد و خودسرویس را برای ساخت، استقرار و اجرای نرم‌افزار فراهم می‌کند. هسته آن شامل IaC با Terraform یا Crossplane و Cluster API، مدیریت پیکربندی با Helm یا Kustomize و اعمال تغییرات به‌صورت GitOps توسط Argo CD یا Flux است. امنیت و انطباق با policy-as-code از طریق OPA Gatekeeper یا Kyverno، مدیریت اسرار با Vault یا SOPS، و امنیت زنجیره تأمین با امضا و اسکن تصویر (Sigstore Cosign، Trivy و SBOM) تضمین می‌شود. مشاهده‌پذیری و پایداری با Prometheus، Grafana، OpenTelemetry و بک‌اندهایی مانند Jaeger/Tempo/Loki، به‌همراه SLOها، مقیاس‌گذاری HPA/VPA/KEDA و در صورت نیاز service mesh مثل Istio یا Linkerd و شبکه‌سازی Cilium/Calico تقویت می‌گردد. تجربه توسعه‌دهنده از طریق یک Internal Developer Portal مانند Backstage، الگوهای طلایی، ادغام با CI/CD (GitHub Actions، GitLab CI، Jenkins)، محیط‌های پیش‌نمایش و تحویل تدریجی با Argo Rollouts یا Flagger بهبود می‌یابد. برای عملیات و حاکمیت، RBAC حداقلی، خط‌مشی‌های پذیرش، ممیزی، مدیریت هزینه با Kubecost و رویکرد چندکلاستری/چندابری به‌کار می‌رود. اندازه‌گیری موفقیت با شاخص‌های DORA و تمرکز بر کاهش بار شناختی انجام می‌شود و با اتخاذ تدریجی پشته، از GitOps و IaC آغاز و سپس به سیاست‌ها، مشاهده‌پذیری، automation و بهبود DX گسترش می‌یابد.

#Kubernetes #PlatformEngineering #DevOps #GitOps #CloudNative #SRE #Observability #Automation

🟣لینک مقاله:
https://ku.bz/TpyynNht7


👑 @DevOps_Labdon
🔵 عنوان مقاله
Kubernetes observability from day one - mixins on Grafana, mimir and alloy

🟢 خلاصه مقاله:
**این مقاله نشان می‌دهد چگونه با استفاده از Kubernetes Mixins (باندل‌هایی از dashboards، alerts و rules بر پایه Jsonnet) می‌توان از همان ابتدا یک پشته observability روی Grafana، Mimir و Alloy راه‌اندازی کرد. نویسنده نحوه رندر و استقرار Mixins برای تولید داشبوردها و قوانین عملیاتی، و نیز اعمال config overrides برای انطباق با برچسب‌ها، نام‌گذاری‌ها و متریک‌های اختصاصی را توضیح می‌دهد. نتیجه، یک نقطه شروع سریع و استاندارد برای observability است که همزمان امکان سفارشی‌سازی و توسعه تدریجی را فراهم می‌کند.

#Kubernetes #Observability #Grafana #Mimir #Alloy #Jsonnet #DevOps

🟣لینک مقاله:
https://ku.bz/HQ0lMwlh2


👑 @DevOps_Labdon
🔵 عنوان مقاله
NGINX Gateway Fabric

🟢 خلاصه مقاله:
NGINX Gateway Fabric یک لایه دروازه‌ مدرن و Cloud‑Native مبتنی بر NGINX است که مدیریت یکپارچه ترافیک را برای سناریوهای ingress، API gateway و ارتباطات سرویس‌به‌سرویس فراهم می‌کند و با Kubernetes و Gateway API همسو است. این راهکار با تفکیک control plane و data plane، مقیاس‌پذیری افقی، چندمستاجری و چندکلاستری را ممکن می‌کند و با جریان‌های GitOps و CI/CD به‌خوبی ادغام می‌شود. قابلیت‌های کلیدی آن شامل مسیریابی L7 هوشمند، TLS termination، mTLS، اعتبارسنجی JWT، rate limiting، تبدیل درخواست/پاسخ، و الگوهای تاب‌آوری مانند retries، timeouts، و انتشارهای تدریجی است. همچنین با ارائه‌ متریک، لاگ و تریس، به‌صورت بومی با Prometheus و OpenTelemetry برای رصدپذیری عمیق یکپارچه می‌شود. هدف، ساده‌سازی عملیات، بهبود امنیت بر پایه policy‑as‑code و ارائه تجربه‌ای یکسان در edge، محیط‌های on‑prem و ابر است.

#NGINX #APIgateway #Kubernetes #GatewayAPI #CloudNative #TrafficManagement #Security #Observability

🟣لینک مقاله:
https://ku.bz/F1y8trBlY


👑 @DevOps_Labdon
🔵 عنوان مقاله
KEDA HTTP Add-on: scale on requests

🟢 خلاصه مقاله:
مقیاس‌گذاری خودکار برای سرویس‌های HTTP در Kubernetes با تکیه بر سیگنال‌های CPU/Memory دقیق نیست. KEDA HTTP Add-on این مشکل را با مقیاس‌گذاری بر اساس ترافیک واقعی HTTP (درخواست‌های در حال پردازش و در صف) حل می‌کند. این افزونه با KEDA یکپارچه است، از scale-to-zero پشتیبانی می‌کند، با یک پروکسی سبک جلوی سرویس صف‌سازی و مسیربندی امن انجام می‌دهد تا هنگام جهش ترافیک، بارگذاری سرد و ازدحام کنترل شود. پیکربندی آن از طریق HTTPScaledObject انجام می‌شود و با Ingress و Service Mesh سازگار است، معمولاً بدون نیاز به تغییر کد برنامه. برای رصدپذیری، متریک‌ها به Prometheus صادر می‌شوند و با Grafana قابل مانیتور هستند. نتیجه، هم‌راست‌سازی تعداد Replicaها با تقاضای واقعی HTTP برای بهبود کارایی، کاهش هزینه و پوشش بهتر ترافیک‌های انفجاری است؛ همچنین می‌تواند در کنار HPA و سایر Scalerهای KEDA استفاده شود.

#KEDA #Kubernetes #Autoscaling #HTTP #Serverless #CloudNative #DevOps #Observability

🟣لینک مقاله:
https://ku.bz/9TQrYJkKK


👑 @DevOps_Labdon
🔵 عنوان مقاله
Kite — Kubernetes Dashboard

🟢 خلاصه مقاله:
Kite یک داشبورد مدرن برای Kubernetes است که دیدپذیری و ایمنی عملیات را بالا می‌برد و کارهای روزمره را ساده می‌کند. این ابزار با ارائه نمای زنده از کلاسترها، نودها، نام‌اسپیس‌ها و ورک‌لودها و امکان ورود سریع به جزئیات Deployment، StatefulSet، DaemonSet، Job و Pod، خطاها و ریسک‌ها را زودتر نمایان می‌کند. پشتیبانی از چندکلاستری، نمایش مبتنی بر RBAC و سابقه فعالیت‌ها، هم همکاری تیمی را آسان می‌کند و هم نیازهای حسابرسی را پوشش می‌دهد.

Kite برای ترابل‌شوتینگ و عملیات، امکاناتی مانند لاگ‌گیری لحظه‌ای، exec داخل Pod، راه‌اندازی مجدد امن و مقایسه تنظیمات را فراهم می‌کند و با تشخیص پیکربندی‌های نادرست، فشار منابع و خطاهای Probe به رفع سریع مشکل کمک می‌کند. همچنین با نمایش درخواست/سقف منابع و الگوهای مصرف، به بهینه‌سازی هزینه و پایداری کمک می‌کند.

در یکپارچه‌سازی، Kite با Prometheus و Grafana سازگار است و با Alertmanager هم‌راستا می‌شود تا روایت واحدی از سلامت سیستم ارائه دهد. امنیت با SSO مبتنی بر OIDC/OAuth، RBAC دقیق، حالت‌های read‑only و قابلیت حسابرسی تقویت شده و اصول حداقل دسترسی رعایت می‌شود.

نصب Kite ساده است: می‌توان آن را داخل کلاستر با Helm نصب کرد یا از دسکتاپ با kubeconfig متصل شد. از CRDها پشتیبانی می‌کند و امکان افزودن نماهای سفارشی و اکشن‌های اختصاصی را می‌دهد. در مقایسه با Kubernetes Dashboard اصلی، تمرکز Kite بر پیش‌فرض‌های امن، چندمستاجری و جریان‌های کاری تیمی است تا تجربه‌ای شفاف، قابل‌ردیابی و مشترک در Kubernetes فراهم کند.

#Kubernetes #Dashboard #K8s #DevOps #CloudNative #Observability #RBAC #Helm

🟣لینک مقاله:
https://ku.bz/95jvldnx_


👑 @DevOps_Labdon
🔵 عنوان مقاله
Troubleshooting packet drops in a Kubernetes-based observability platform

🟢 خلاصه مقاله:
این مطالعه موردی نشان می‌دهد تیم SRE در Kapital Bank چگونه افت‌های مقطعی بسته‌ها و افزایش تاخیر را در یک پلتفرم مشاهده‌پذیری مبتنی بر Kubernetes که به لایه Memcached متکی بود، ریشه‌یابی کرد. با آنکه شاخص‌های سطح اپلیکیشن عادی به‌نظر می‌رسید، بررسی عمیق‌تر مسیر شبکه در سطح کرنل و شمارنده‌های گره‌ها و پادها، فشار لحظه‌ای ترافیک و اشباع صف‌ها را آشکار کرد. تیم با آزمایش‌های کنترل‌شده و تنظیم محتاطانه پارامترهای کرنل—از جمله عمق صف‌ها و اندازه بافرها—پارامترها را با الگوی ترافیک Memcached روی Kubernetes هم‌تراز کرد و در نتیجه، افت بسته‌ها کاهش یافت و پایداری و تاخیر انتها‌به‌انتها بهبود پیدا کرد. این روایت در medium.com یک روش عملی برای عیب‌یابی مسائل شبکه‌ای در سطح کرنل در محیط‌های کانتینری ارائه می‌دهد: مشاهد‌ه‌پذیری لایه‌به‌لایه، اعتبارسنجی فرضیات، و تیونینگ مبتنی بر شواهد.

#Kubernetes #SRE #Memcached #Observability #Networking #KernelTuning #PacketLoss #DevOps

🟣لینک مقاله:
https://ku.bz/spNnnpsM-


👑 @DevOps_Labdon
1
🔵 عنوان مقاله
A practical guide to error handling in Go (10 minute read)

🟢 خلاصه مقاله:
** این مقاله یک راهنمای عملی ۱۰ دقیقه‌ای برای مدیریت خطا در Go است که نشان می‌دهد این زبان از طراحی مینیمال مبتنی بر بازگرداندن و بررسی error شروع کرده و به مرور با الگوهایی مثل افزودن کانتکست و استفاده از errors.Is و errors.As غنی‌تر شده است. چالش مهم، نبود ردیابی داخلی برای دیدن مسیر انتشار خطا است؛ ابزارهای Datadog یعنی Error Tracking و Orchestrion این شکاف را با ارائه دید شفاف از محل بروز خطا و نحوه انتشار آن در کد پوشش می‌دهند و عیب‌یابی را سریع‌تر و دقیق‌تر می‌کنند. جمع‌بندی: به‌کارگیری الگوهای idiomatic در Go در کنار این ابزارها، خطاها را از پیام‌های کوتاه به روایتی قابل پیگیری از رخداد تا رفع تبدیل می‌کند.

#Go #Golang #ErrorHandling #Datadog #ErrorTracking #Orchestrion #Tracing #Observability

🟣لینک مقاله:
https://www.datadoghq.com/blog/go-error-handling/?utm_source=tldrdevops


👑 @DevOps_Labdon
🔵 عنوان مقاله
A Hands-on Guide to Kubernetes Observability with Whisker

🟢 خلاصه مقاله:
** این راهنمای عملی با تمرکز بر Kubernetes Observability و ابزار متن‌باز Whisker، در قالب یک لَب تعاملی نشان می‌دهد چگونه مشکلات مربوط به NetworkPolicy را سریع شناسایی و عیب‌یابی کنید. با بررسی رفتار اتصال بین سرویس‌ها و نگاشت محدودیت‌ها به قوانین NetworkPolicy، می‌آموزید مشکل از کجاست، چگونه فرضیه‌ها را آزمایش و راه‌حل را اعتبارسنجی کنید، و پس از اصلاح، صحت عملکرد را تأیید نمایید. نتیجه این لَب یک روند تکرارشونده و کاربردی برای تشخیص علت ریشه‌ای و کاهش زمان بازیابی است که برای تیم‌های پلتفرم، SRE و توسعه‌دهندگان مفید است.

#Kubernetes #Observability #Whisker #NetworkPolicy #Troubleshooting #CloudNative #SRE #OpenSource

🟣لینک مقاله:
https://ku.bz/Yqn88cNMP


👑 @DevOps_Labdon
🔵 عنوان مقاله
Load Balancing Monitor Groups: Multi-Service Health Checks for Resilient Applications (5 minute read)

🟢 خلاصه مقاله:
Cloudflare قابلیت جدیدی به نام Monitor Groups را در Load Balancing معرفی کرده است که چندین مانیتور سلامت را به یک نمای واحد و قابل اتکا از وضعیت برنامه جمع می‌کند. این گروه‌ها با ارزیابی مبتنی بر quorum و امکان اولویت‌دادن به مانیتورهای حیاتی، تصویری واقعی‌تر از سلامت سراسری (end-to-end) ارائه می‌دهند. ارزیابی‌ها از نقاط جغرافیایی توزیع‌شده انجام می‌شود تا مشکلات منطقه‌ای شناسایی و از تصمیم‌گیری بر اساس یک دید محدود جلوگیری شود. نتیجه این رویکرد، failover هوشمندتر و traffic steering دقیق‌تر است که بر دسترس‌پذیری واقعی تکیه دارد و پایداری برنامه‌ها را در برابر اختلالات بخشی افزایش می‌دهد.

#Cloudflare #LoadBalancing #HealthChecks #TrafficSteering #Failover #HighAvailability #Resilience #Observability

🟣لینک مقاله:
https://blog.cloudflare.com/load-balancing-monitor-groups-multi-service-health-checks-for-resilient/?utm_source=tldrdevops


👑 @DevOps_Labdon
🔵 عنوان مقاله
Blixt: Experimental Rust-Based eBPF Load Balancer

🟢 خلاصه مقاله:
Blixt یک پروژه آزمایشی برای ساخت یک متعادل‌کنندهٔ بار با تکیه بر eBPF در مسیر داده و Rust در مسیر کنترل است. ایدهٔ اصلی، نزدیک‌کردن پردازش بسته‌ها به هستهٔ Linux برای کاهش تأخیر و سربار، در کنار ایمنی و قابلیت آزمون‌پذیری بالای مسیر کنترل است. برنامه‌های کوچک eBPF (مثلاً روی XDP یا TC) طبقه‌بندی ترافیک و انتخاب مقصد را انجام می‌دهند و وضعیت را در BPF mapها نگه می‌دارند؛ مؤلفهٔ کاربریِ مبتنی بر Rust سیاست‌ها، الگوریتم‌های توزیع بار، سلامت سرویس‌ها و به‌روزرسانی‌های پویا را مدیریت می‌کند. ترکیبِ ممیز eBPF و ایمنی حافظهٔ Rust ریسک خطاهای هسته و کاربر را کاهش می‌دهد و با رویدادها و متریک‌ها (ring buffer/perf events) رصدپذیری مناسبی فراهم می‌شود. تمرکز پروژه بر پایداری تأخیر، کاهش سوییچ متن و سازگاری با ابزارهای Linux است؛ با این حال، Blixt هنوز آزمایشی است و پوشش قابلیت‌ها محدود بوده و کارایی به نسخهٔ هسته، قابلیت‌های NIC و بار کاری وابسته است. در نقشهٔ راه، بلوغ ردیابی اتصال، تنوع الگوریتم‌ها، به‌روزرسانی بی‌وقفه، یکپارچه‌سازی کشف سرویس و مقاوم‌سازی در برابر خطاها دنبال می‌شود.

#eBPF #Rust #LoadBalancing #Networking #Linux #XDP #Kernel #Observability

🟣لینک مقاله:
https://ku.bz/1cZxMK7Ck


👑 @DevOps_Labdon
🔵 عنوان مقاله
Kubetail

🟢 خلاصه مقاله:
Kubetail یک اسکریپت bash سبک است که لاگ‌های چندین pod را در Kubernetes به‌صورت هم‌زمان و در یک جریان واحد نمایش می‌دهد؛ یعنی همان کاری که kubectl logs -f انجام می‌دهد، اما برای چند pod به‌طور یکجا. این ابزار فقط روی کلاینت اجرا می‌شود و چیزی داخل کلاستر نصب نمی‌کند، بنابراین با kubeconfig و دسترسی‌های فعلی شما کار می‌کند.

با اشاره به الگوهای نام، برچسب‌ها یا namespace، می‌توانید لاگ‌ چندین سرویس را هم‌زمان دنبال کنید و خروجی هر pod را در یک تایم‌لاین یکپارچه—معمولاً با رنگ یا تفکیک—ببینید. Kubetail برای دیباگ سریع microservices و رفع اشکال سناریوهای توزیع‌شده عالی است. البته جایگزین سیستم‌های ذخیره‌سازی و مشاهده‌پذیری بلندمدت نیست؛ هدفش ساده‌سازی و سرعت‌بخشی به tail/trace لحظه‌ای لاگ‌هاست.

#Kubetail #Kubernetes #kubectl #DevOps #Logs #Bash #Observability #SRE

🟣لینک مقاله:
https://ku.bz/9BypVmZBZ


👑 @DevOps_Labdon
🔵 عنوان مقاله
A Hands-on Guide to Kubernetes Observability with Whisker

🟢 خلاصه مقاله:
این لَب تعاملی نشان می‌دهد چگونه با استفاده از ابزار متن‌باز Whisker به رصدپذیری Kubernetes دست پیدا کنید تا مسائل مربوط به Network Policies را سریع پیدا و برطرف کنید. شرکت‌کنندگان با بررسی جریان ترافیک بین Pods و Services، شناسایی خطاهای پیکربندی سیاست‌های شبکه، و ردیابی ارتباط Pod‑to‑Pod می‌آموزند مشکل از کجاست و چگونه آن را اصلاح کنند. همچنین با رویه‌های عیب‌یابی شفاف و همبست‌سازی مشاهدات با مفاهیم Kubernetes (مثل Deployments، Services و NetworkPolicies)، می‌توانید اثر سیاست‌ها بر ارتباطات سرویس‌ها را بسنجید و مسیرهای مسدود یا پرخطر را تشخیص دهید. در پایان، استفاده روزمره از Whisker برای کاهش زمان عیب‌یابی و بهبود قابلیت اطمینان و امنیت کلاستر را فرامی‌گیرید.

#Kubernetes #Observability #Whisker #NetworkPolicies #Troubleshooting #OpenSource #DevOps #CloudNative

🟣لینک مقاله:
https://ku.bz/Yqn88cNMP


👑 @DevOps_Labdon